Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T06:22:42.007Z Has data issue: false hasContentIssue false

Karyometrical analysis of Microsomacanthus spasskii and M. spiralibursata

Published online by Cambridge University Press:  05 June 2009

R. Petkevičiūtė
Affiliation:
Institute of Ecology, Akademijos st. 2, Vilnius 2600, Lithuania
K.V. Regel
Affiliation:
lnstitute of the Biological Problems of the North, Russian Academy of Sciences, K. Marx st. 24, Magadan 685010, Russia

Abstract

Analysis of Giemsa-stained mitotic metaphase plates of Microsomacanthus spasskii and M. spiralibursata (Cestoda: Hymenolepididae) revealed the diploid chromosome numbers for both species to be 2n=6. The karyotypes are remarkably similar in general morphology; they both consist of three pairs of metacentric or meta-submetacentric chromosomes graded in size from 4.3 to 7.0 μm. Slight interspecific differences exist in the position of the centromere of chromosomes of the pair 3. Based on existing chromosome data the possible pathways of the karyotypic evolution within the family Hymenolepididae are discussed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birstein, V.J. (1987) Cytogenetic and molecular aspects of vertebrate evolution. Moskow: Izdatel'stvo “Nauka” (in Russian).Google Scholar
Fischer, A. (1987) Chromosome studies in nine species of Austrian Symphyla (Myriapoda, Tracheata, Arthropoda). Genetica 75, 109116.CrossRefGoogle Scholar
Garcia, E., Alvarez, M.C. & Thode, G. (1987) Chromosome relationships in the genus Blennius (Blenniidae: Perciformes) C-banding patterns suggests two karyoevolutional pathways. Genetica 72, 2736.CrossRefGoogle Scholar
Grossman, A.L., Short, R.B. & Cain, G.D. (1981) Karyotype evolution and sex chromosome differentiation in schistosomes (Trematoda, Schistosomatidae). Chromosoma 84, 413430.CrossRefGoogle ScholarPubMed
Hossain, M.M. & Jones, A.W. (1963) The chromosomes of Hymenolepis microstoma (Dujardin, 1845). Journal of Parasitology 49, 305307.CrossRefGoogle ScholarPubMed
Jones, A.W. (1945) Studies in cestode cytology. Journal of Parasitology 31, 213235.CrossRefGoogle Scholar
Jones, A.W. & Ciordia, H. (1955) A cytological race of Hymenolepis nana. Association of South-eastern Biologists Bulletin 2, 8.Google Scholar
Kisner, R.L. (1957) The chromosomes of Hymenolepis diminuta. Journal of Parasitology 43, 494495.CrossRefGoogle ScholarPubMed
Kligerman, A.D. & Bloom, E. (1977) Rapid chromosome preparations from solid tissues of fishes. Journal of the Fisheries Research Board of Canada 34, 266269.CrossRefGoogle Scholar
Levan, A., Fredga, K. & Sandberg, A. (1964) Nomenclature for centromere position on chromosomes. Hereditas 52, 201220.CrossRefGoogle Scholar
Liu, G. & He, L. (1987) Studies on the cytogenetics of Cestoda I. The karyotype of Hymenolepis diminuta. Hereditas (Beijing) 9, 2627 (in Chinese).Google Scholar
Proffit, H.R. & Jones, A.W. (1969) Chromosome analysis of Hymenolepis microstoma. Experimental Parasitology 25, 7284.CrossRefGoogle Scholar
Spasskaja, L.P. (1966) Cestodes of the birds of USSR. Hymenolepididae. Moskow: Izdatel'stvo “Nauka” (in Russian).Google Scholar
Vitturi, R., Rasotto, M., Parrinello, N. & Catalano, E. (1982) Spermatocyte chromosomes in some species of the family Aplysiidae (Gastropoda, Opisthobranchia). Caryologia 35, 327333.CrossRefGoogle Scholar
Vitturi, R., Carbone, P. & Catalano, E. (1985) The chromosomes of Pycnodonta conclear (Poli) (Mollusca, Pelecypoda). Biologisches Zentralblatt 104, 177182.Google Scholar
Ward, E.J., Evans, W.S. & Novak, M. (1981) Karyotype of Hymenolepis citelli (Cestoda Cyclophyllidea). Canadian Journal of Genetics and Cytology 23, 449452.CrossRefGoogle Scholar
White, M.J.D. (1978) Modes of speciation. San Francisco: W.H. Freeman & Co.Google Scholar