Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T08:05:34.166Z Has data issue: false hasContentIssue false

Interleukin-5, eosinophils and the control of helminth infections in man and laboratory animals

Published online by Cambridge University Press:  05 June 2009

S.K. Tagboto
Affiliation:
International Institute of Parasitology, 395A Hatfield Road, St Albans, AL4 OXU, UK

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, B.B. & Pocsik, E. (1992) Cytokines: from clone to clinic. Archives of Biochemistry and Biophysics 292,335359.CrossRefGoogle ScholarPubMed
Alwan, W.A. & Openshaw, P.J.M. (1993) Distinct patterns of T-and B-cell immunity to respiratory syncytial virus induced by individual viral proteins. Vaccine 11,431437.CrossRefGoogle ScholarPubMed
Bancroft, A.J., Grencis, R.K., Else, K.J. & Devaney, E. (1993) Cytokine production in Balb/c mice immunised with radiation attenuated third-stage larvae of the filarial nematode, Brugia pahangi. Journal of Immunology 150, 13951402.CrossRefGoogle ScholarPubMed
Bass, D.A. & Szejda, P. (1979) Mechanisms of killing of newborn Trichinella spiralis by neutrophils and eosinophils —killing by generators of hydrogen peroxide in vitro. Journal of Clinical Investigation 64, 15581564.CrossRefGoogle ScholarPubMed
Behnke, J.M., Wahid, F.N., Grencis, R.K., Else, K.J., BenSmith, A.W. & Goyal, P.K. (1993) Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunology 15,415421.CrossRefGoogle ScholarPubMed
Bond, M.W., Shrader, B., Mosmann, T.R. & Coffman, R.L. (1987) A mouse T cell product that preferentially enhances IgA production II. Physicochemical characterisation. Journal of Immunology 139, 36913696.CrossRefGoogle Scholar
Brown, W.C., Woods, V.M., Dobbelaere, D.A.E. & Logan, K.S. (1993) Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cell clones activated in vitro. Infection and Immunity 61, 32733281.CrossRefGoogle ScholarPubMed
Buys, J., Wever, R. & Ruitenberg, E.J. (1984) Myeloperoxidase is more efficient than eosinophil peroxidase in the in vitro killing of newborn larvae of Trichinella spiralis. Immunology 51, 601607.Google ScholarPubMed
Chandrashekar, R., Rao, U.R., & Subrahmanyam, D. (1985) Serum dependent cell-mediated immune reactions to Brugia pahangi infective larvae. Parasite Immunology 7,633641.CrossRefGoogle ScholarPubMed
Chensue, S.W., Warmington, K.S., Hershey, S.D., Terebuh, P.D., Othman, M. & Kunkel, S.L. (1993) Evolving T cell responses in murine schistosomiasis. Th2 cells mediate secondary granulomatous hypersensitivity and are regulated by CD8+ T cells in vivo. Journal of Immunology 151, 13911400.CrossRefGoogle ScholarPubMed
Cheever, A.W., Xu, Y., Sher, A. & Macedonia, J.G. (1991)Analysis of egg granuloma formation in Schistosoma japonicum infected mice treated with antibody to interleukin 5 and gamma interferon. Infection and Immunity 59, 40714074.CrossRefGoogle ScholarPubMed
Cheever, A.W., Xu, Y.H., Sher, A., Finkelman, F.D., Cox, T.M. & Macedonia, J.G. (1993) Schistosoma japonicum infected mice show reduced hepatic fibrosis and eosinophilia and selective inhibition of interleukin 5 secretion by CD4+ cells after treatment with anti interleukin 2 antibodies. Infection and Immunity 61, 12881292.CrossRefGoogle ScholarPubMed
Cher, D.J. & Mosmann, T.R. (1987) Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by Th1 clones. Journal of Immunology 138, 36883694.CrossRefGoogle ScholarPubMed
Clutterbuck, E.J., Hirst, E.M.A. & Sanderson, C.J. (1989) Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GM-CSF. Blood 73, 15041512.CrossRefGoogle Scholar
Coffman, R.C., Seymour, B.W.P., Hudak, S., Jackson, J. & Rennick, D. (1989) Antibody to interleukin 5 inhibits helminth induced eosinophilia in mice. Science 245, 308.CrossRefGoogle ScholarPubMed
Dent, L.A., Strath, M., Mellor, A. & Sanderson, C.J. (1990) Eosinophilia in transgenic mice expressing interleukin-5. Journal of Experimental Medicine 172, 1425.CrossRefGoogle ScholarPubMed
Doenhoff, M.J., Mohda, J., Lambertucci, J.R. & McLaren, D.J. (1991) The immune dependence of chemotherapy. Parasitology Today 7, 1618.CrossRefGoogle ScholarPubMed
Dunne, D.W., Richardson, B.A., Jones, F.M., Clark, M., Thorne, K.J.I. & Bufterworth, H.E. (1993) The use of mouse/human chimaeric antibodies to investigate the roles of different antibody isotypes, including IgA2, in the killing of Schistosoma mansoni schistosomula by eosinophils. Parasite Immunology 15, 181185.CrossRefGoogle ScholarPubMed
Else, K.J. & Grencis, R.K. (1991) Cellular immune responses to the murine nematode parasiteTrichuris muris. I. Differential cytokine production during acute or chronic infection. Immunology 72, 508513.Google ScholarPubMed
Else, K.J. & Wakelin, D. (1988) The effects of H-2 and non H-2 genes on the expulsion of the nematode Trichuris muris from inbred and congenic mice. Parasitology 96, 543550.CrossRefGoogle ScholarPubMed
Else, K.J., Wakelin, D., Wassom, D.L. & Hauda, K.M. (1990) MHC-restricted antibody responses to Trichuris muris excretory/secretory (E/S) antigen. Parasite Immunology 12, 509527.CrossRefGoogle ScholarPubMed
Else, K.J., Entwhistle, G.M. & Grencis, R.K. (1993) Correlations between worm burden and markers of Th1 and Th2 cell subset induction in an inbred mouse infected with Trichuris muris. Parasite Immunology 15, 595600.CrossRefGoogle Scholar
Elson, L.H., Calvopina, M.H., Paredes, Y.W., Araujo, E.N., Bradley, J.E., Guderian, R.H. & Nutman, T.B. (1995) Immunity to onchocerciasis: putative immune persons produce a Th1-like response to Onchocerca volvulus. Journal of Infectious Diseases 171, 652658.CrossRefGoogle ScholarPubMed
Finkelman, F.D. & Urban, J.F. (1992) Cytokines: making the right choice. Parasitology Today 8, 311314.CrossRefGoogle ScholarPubMed
Finkelman, F.D., Pearce, E.J., Urban, J.F. & Sher, A. (1991) Regulation and biological function of helminth induced cytokine responses. Parasitology Today 7, A62–A65.CrossRefGoogle Scholar
Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. (1989) Two types of mouse Thelper cell. iv. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. Journal of Experimental Medicine 170, 20812095.CrossRefGoogle Scholar
Folkard, S.G., Hogarth, P.J., Taylor, M.J. & Bianco, A.E. (in press) Eosinophils are major effector cells of immunity to microfilariae in a mouse model of onchocerciasis. Parasitology.Google Scholar
Gansmuller, A., Aneunis, A., Venturiello, S.M., Bruschi, F. & Binaghi, R.A. (1987) Antibody dependent in vitro cytotoxicity of newborn Trichinella spiralis larvae: nature of cells involved. Parasite Immunology 9, 281292.CrossRefGoogle ScholarPubMed
Goyal, P.K., Hermanek, J., & Wakelin, D. (1994) Lymphocyte production in mice infected with different geographical isolates of Trichinella spiralis. Parasite Immunology 16, 105110.CrossRefGoogle ScholarPubMed
Grencis, R.K., Hultner, L. & Else, K.J. (1991) Host protective immunity to Trichinella spiralis in mice: activation of Th-cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology 74, 329332.Google ScholarPubMed
Grove, D.I., Mahmoud, A.A. & Warren, K.S. (1977) Eosinophils and resistance of Trichinella spiralis. Journal of Experimental Medicine 145, 755.CrossRefGoogle ScholarPubMed
Hamajima, F., Yamamoto, M., Tsuru, S., Yamakami, K., Fujino, T., Hamajima, H. & Katsura, Y. (1994) Immunosuppression by a neutral thiol protease from parasitic helminth larvae in mice. Parasite Immunology 16, 261273.CrossRefGoogle ScholarPubMed
Hermanek, J., Goyal, P.K. & Wakelin, D. (1994) Lymphocyte, antibody and cytokine responses during concurrent infections between helminths that selectively promote Thelper-1 or T-helper-2 activity, Parasite Immunology 16, 111117.CrossRefGoogle ScholarPubMed
Hirayama, K., Abrams, J.S., Quinn, J.J. & Ham, D.A. (1994) Heterogeneity of antigen-specific CD4+ T cell clones from a patient with schistosomiasis mansoni. Parasite Immunology 16, 561569.CrossRefGoogle ScholarPubMed
Horowitz, J.B., Kaye, J., Conrad, P.J., Katz, M.E. & Janeway, C.A. (1986) Autocrine growth inhibition of a cloned line of helper T cells. Proceedings of the National Academy of Sciences, USA 83, 18861890.Google ScholarPubMed
Jabara, H.H., Ackerman, S.J., Vercelli, D., Yokota, T., Arai, K.I., Abrams, J., Duorak, A.M., Lavigne, M.C., Banchereau, J., DeVries, J., Leung, D.Y.M. & Geha, R.S. (1988) Induction of protective interleukin-4-dependent IgE synthesis and interleukin-5-dependent eosinophil differentiation by supernatants of a human T-cell clone. Journal of Clinical Immunology 8, 437446.CrossRefGoogle Scholar
Johnson, E.H., Lustigman, S., Brotman, B., Browne, J. & Prince, A.M. (1991) Onchocerca volvulus: in vitro killing of microfilariae by neutrophils and eosinophils from experimentally infected chimpanzees. Tropical Medicine and Parasitology 42, 351355.Google ScholarPubMed
Kayes, S.G. & Herndon, F.J. (1992) Depletion of eosinophils by anti 1L5 monoclonal antibody treatment of mice infected with Trichinella spiralis does not alter parasite burden or immunologic resistance to re-infection. Journal of Immunology 149, 36423647.Google Scholar
Kehrli, M.E., Cullor, J.S. & Nickerson, S.C. (1991) Immunobiology of haematopoietic colony-stimulating factors: potential application to disease prevention in the bovine. Journal of Dairy Science 77, 43994412.CrossRefGoogle Scholar
Kelly, E.A.B., Cruz, E.S., Hauda, K.M. & Wassom, D.L. (1991) INF-gamma and IL-5 producing cells compartmentalise to different lymphoid organs in Trichinella spiralis infected mice. Journal of Immunology 147, 306311.CrossRefGoogle Scholar
King, C.L., Stupi, R.J., Shata, M.T., Khaudary, J.M., Helmy, A.S., Ibrahim, S.K., Shehata, M.H., Nafeh, M.A. & Medhat, A.N. (1994) Cytokine control of parasite-specific anergy in human urinary schistosomiasis: IL-4 and IL-10 modulate lymphocyte reactivity. Programme and Abstracts of the 43rd annual meeting of the American Society of Tropical Medicine and Hygiene. Supplement to the American Journal of Tropical Medicine and Parasitology November 14–17, p.148.Google Scholar
Kojima, S., Yamamoto, N., Kanazawa, T., Shigematsu, H. & Ovary, Z. (1985) Enhancement of IgE dependent eosinophil cytotoxicity to dinitrophenylated schistosomula by a nematode infection. International Archives of Allergy and Applied Immunity 76, 9194.Google ScholarPubMed
Kojima, S., Yamamoto, N., Kanazawa, T., Shigematsu, H. & Ovary, Z. (1985) Monoclonal IgE-dependent eosinophil cytotoxicity to haptenated schistosomula of Schistosoma japonicum: enhancement of the cytotoxicity and expression of Fc receptors for IgE byNippostrongylus brasiliensis infection. Journal of Immunology 134, 27192722.CrossRefGoogle ScholarPubMed
Kopf, M., Le Gros, G., Bachmann, M., Lamers, C.M., Bluethmann, H. & Kohler, G. (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362, 254–248.CrossRefGoogle ScholarPubMed
Korenaga, M., Hitoshi, Y., Yamaguchi, N., Sato, Y., Takatsu, K. & Tada, I. (1991) The role of interleukin 5in protective immunity to Strongyloides venezuelensis infection in mice. Immunology 72, 502507.Google Scholar
Korenaga, M., Hitoshi, Y., Takatsu, K. & Tada, I. (1994) Regulatory effect of anti-interleukin 5 monoclonal antibody on intestinal worm burden in a primary infection with Strongyloides venezuelensis in mice. International Journal for Parasitology 24, 951957.CrossRefGoogle Scholar
Lee, T.D.G. (1991) Helminthotoxic responses of intestinal eosinophils to Trichinella spiralis newborn larvae. Infection and Immunity 59, 44054411.CrossRefGoogle ScholarPubMed
Limaye, A.P., Abrams, J.S., Silver, J.E., Ottesen, E.A. & Nutman, T.B. (1990) Regulation of parasite induced eosinophilia: selectively increased interleukin 5 production in helminth infected patients. Journal of Experimental Medicine 172, 399406.CrossRefGoogle ScholarPubMed
Limaye, A.P., Ottesen, E.A., Kumaraswami, V., Abrams, J.S. & Regunathan, J. (1993) Kinetics of serum and cellular interleukin-5 in posttreatment eosinophilia of patients with lymphatic filariasis. Journal of Infectious Diseases 167, 13961400.CrossRefGoogle ScholarPubMed
McKenzie, D.T., Filutowicz, H.I., Swain, S.L. & Dutton, R.W. (1987) Purification and partial sequence analysis of murine B cell growth factor II (Interleukin 5).Journal of Immunology 139, 26612668.CrossRefGoogle ScholarPubMed
Mehta, K., Subrahmanyam, D., Hopper, K., Nelson, D.S. & Rao, C.K. (1981) IgG-dependent human eosinophilmediated adhesion and cytotoxicity of Litomosoides carinii larvae. Indian Journal of Medical Research 74, 226230.Google ScholarPubMed
Metwali, A., Elliott, D., Mathew, R., Blum, A. & Weinstock, J.V. (1993) Granulomas from mice infected with Schistosoma mansoni. Journal of Immunology 150, 536542.CrossRefGoogle ScholarPubMed
Milbourne, E.A. & Howell, M.J. (1993) Eosinophil differentiation in response toFasciola hepatica. International Journal for Parasitology 23, 10051009.CrossRefGoogle ScholarPubMed
Mosmann, T.R. (1991) Cytokine secretion phenotypes of Th cells: how many subsets; how much regulation? Research in Immunology 142, 913.CrossRefGoogle ScholarPubMed
Mosmann, T.R. & Coffman, R.L. (1989) Th1 and Th2 cells: Different patterns of cytokine secretion lead to different functional properties. Annual Review of Immunology 7,145173.CrossRefGoogle ScholarPubMed
Mosmann, T.R. & Moore, K.W. (1991) The role of interleukin 10 in cross regulation of Th1 and Th2 responses. Parasitology Today 7, A49–A53.CrossRefGoogle Scholar
Murray, P.D., McKenzie, D.T., Swain, S.L. & Dagnoff, M.F. (1987) Interleukin 5 and Interleukin 4 produced by Peyer's patch T cells selectively enhance immunoglobulin A expression. Journal of Immunology 139, 26692674.CrossRefGoogle ScholarPubMed
Nutman, T.B., Kumaraswami, V., Pao, L., Narayanan, P.R. & Ottesen, E.A. (1987) An analysis of in vitro B cell immune responsiveness in human lymphatic filariasis. Journal of Immunology 138, 39543959.CrossRefGoogle ScholarPubMed
Ottesen, E.A., Weller, P.F., Lunde, M.N. & Hussain, R. (1982) Endemic filariasis on a Pacific island II. Immunological aspects: Immunoglobulin, complement, and specific antifilariai IgG, IgM and IgE antibodies. American Journal of Tropical Medicine and Hygiene 31, 953961.CrossRefGoogle ScholarPubMed
Parsons, J.C., Coffman, R.L. & Grieve, R.B. (1993) Antibody to interleukin 5 prevents blood and tissue eosinophilia but not liver trapping in murine toxocariasis. Parasite Immunology 15, 501508.CrossRefGoogle ScholarPubMed
Pearce, E.J., Caspar, P., Grzych, J.M., Lewis, F.A. & Sher, A. (1991) Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. Journal of Experimental Medicine, 173, 159166.CrossRefGoogle ScholarPubMed
Pearlman, E., Kroeze, W.K., Hazlett, F.E., Chen, S.A., Mawhorter, S.D., Boom, W.H. & Kazura, J.W. (1993) Brugia malayi: Acquired resistance to microfilariae in BALB/c mice correlates with local Th2 responses. Experimental Parasitology 71, 200208.CrossRefGoogle Scholar
Pinder, M., Dupont, A. & Egwang, T.G. (1988) Identification of a surface antigen on Lao loa microfilariae the recognition of which correlates with the amicrofilaraemic state in man. Journal of Immunology 141, 24802486.CrossRefGoogle Scholar
Pond, L., Wassam, D.L. & Hayes, C.E. (1989) Evidence for differential induction of helper T-cell subsets during Trichinella spiralis infection. Journal of Immunology 143, 42324238.CrossRefGoogle ScholarPubMed
Reiner, S.L. (1994) Parasites and T helper cell development: some insights. Parasitology Today 10, 485488.CrossRefGoogle Scholar
Rennick, D.M., Thompson-Snipes, L., Coffmann, R.L., Seymour, B.W.P., Jackson, J.O. & Hudack, S. (1990) In vivo administration of antibody to interleukin-5 inhibits generation of eosinophils and their progenitors in bone marrow of parasitised mice. Blood 76, 312316.CrossRefGoogle Scholar
Sanderson, C.J., Waren, D.J. & Strath, M. (1985) Identification of a lymphokine that stimulates eosinophil differentiation in vitro its relationships to interleukin 3 and functional properties of eosinophils produced in cultures. Journal of Experimental Medicine 162, 6074.CrossRefGoogle ScholarPubMed
Sasaki, O., Sugaya, H., Ishidi, K. & Yoshimura, K. (1993) Ablation of eosinophils with anti IL5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis. Parasite Immunology 15, 349354.CrossRefGoogle ScholarPubMed
Schimpl, A. & Wecker, F. (1975) A third factor in B cell activation given by TRF. Journal of Immunology 139, 177188.Google Scholar
Sher, A., Coffman, R.L., Hieny, S. & Cheever, A.W. (1990) Ablation of eosinophilia and IgE responses with anti IL-5 or anti-IL-4 antibodies fails to attract immunity against Schistosoma mansoni in the mouse. Journal of Immunology 145, 3811.Google Scholar
Sher, A., Coffman, R.L., Hieny, S., Scott, P. & Cheever, A.W. (1990) Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proceedings of the National Academy of Sciences, USA 87, 6165.CrossRefGoogle Scholar
Silberstein, D.S. & David, J.R. (1987) The regulation of human eosinophil function by cytokines. Immunology Today 8,380385.CrossRefGoogle ScholarPubMed
Soboslay, P.T., Dreweck, C.M., Hoffmann, W.H., Luder, C.G.K., Heuschkel, C., Gorgen, H., Banla, M. & Schulz-Key, H. (1992) Ivermectin facilitated immunity in onchocerciasis. Reversal of lymphocytopenia, cellular anergy and deficient cytokine production after single treatment. Clinical and Experimental Immunology 89, 407413.CrossRefGoogle ScholarPubMed
Soboslay, P.T., Luder, C.G.K., Hoffmann, W.H., Michaelis, I., Helling, G., Heuschkel, C., Dreweck, C.M., Blanke, C.H., Pritze, S., Banla, M. & Schulz-Key, H. (1994) Ivermectin facilitated immunity in onchocerciasis; activation of parasite-specific Th1 type responses with subclinical Onchocerca volvulus infection. Clinical and Experimental Immunology 96, 238244.CrossRefGoogle ScholarPubMed
Spry, C.J.E., Kay, A.B. & Gleich, G.J. (1992) Eosinophils 1992. Immunology Today 13, 384387.CrossRefGoogle ScholarPubMed
Steel, C., Lujan-Tranjay, A., Gonzalez-Peralta, C., Zea-Flores, G. & Nutman, T.B. (1993) Transient changes in cytokine profiles following ivermectin treatment of onchocerciasis. Journal of Infectious Diseases 170, 962970.CrossRefGoogle Scholar
Steel, C. & Nutman, T.B. (1993) Regulation of IL5 in onchocerciasis. A critical role for IL-2. Journal of Immunology 150, 55115518.CrossRefGoogle ScholarPubMed
Strath, M., Dent, L. & Sanderson, C. (1992) Infection of IL5 transgenic mice with Mesocestoides corti induces very high levels of IL5 but depressed production of eosinophils. Experimental Haematology 20, 229234.Google ScholarPubMed
Swain, S.L. & Dutton, R.W. (1982) Production of a B cell growth-promoting activity DL(BCGF), from a cloned T cell line and its assay on the BCL1 B cell tumour. Journal of Experimental Medicine 156, 18211834.CrossRefGoogle Scholar
Takamoto, M. & Sugane, K. (1993) Mechanisms of eosinophilia in Toxocara canis infected mice: In vitro production of interleukin 5 by lung cells of both normal and congenitally athymic nude mice. Parasite Immunology 15, 493500.CrossRefGoogle ScholarPubMed
Takatsu, K., Tominaga, A., Harada, N., Mita, S., Matsumoto, M., Takahashi, T., Kikuchi, Y. & Yamaguchi, N. (1988) T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunological Reviews 102, 107135.CrossRefGoogle ScholarPubMed
Taylor, M.J., van Es, R.P., Shay, K., Folkard, S.G., Townson, S. & Bianco, A.E. (1994) Protective immunity against Onchocerca volvulus and Onchocerca lienalis infective larvae in mice. Tropical Medicine and Parasitology 45, 1723.Google ScholarPubMed
Townson, S., Tagboto, S.K., Castro, J., Lujan, A., Awadzi, K. & Titanji, V.P.K. (1994) Comparison of the sensitivity of different geographical races of Onchocerca volvulus microfilariae to ivermectin. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 101106.CrossRefGoogle ScholarPubMed
Thompson-Snipes, L., Dhar, V., Bond, M.W., Mosmann, T.R., Moore, K.W. & Rennick, D.M. (1991) Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. Journal of Experimental Medicine 173,507510.CrossRefGoogle ScholarPubMed
Tominaga, A., Matsumoto, M., Harada, N., Takahashi, T., Kikuchi, Y. & Takatsu, K. (1988) Molecular properties and regulation of mRNA expression for murine T cell replacing factor/1L5. Journal of Immunology 140,11751181.CrossRefGoogle Scholar
Udonsi, J.K. (1988) Filariasis in the Igwun River Basin, Nigeria: an epidemiological and clinical study with a note on the vectors. Annals of Tropical Medicine and Parasitology 82, 7582.CrossRefGoogle ScholarPubMed
Ufomadu, G.O., Akpa, A.U.C. & Ekejindu, I.M. (1992) Human onchocerciasis in the lower Jos Plateau, Central Nigeria: the prevalence, geographical distribution and epidemiology in Akwanga and Lafia Local Government Areas. Annals of Tropical Medicine and Parasitology 86, 637647.CrossRefGoogle ScholarPubMed
Venturiello, S.M., Giambartolemei, G.H. & Costantino, S.N. (1993) Immune killing of newborn Trichinella larvae by human leukocytes. Parasite Immunology 15, 559564.CrossRefGoogle Scholar
Weller, P.F., Ottesen, E.A., Heck, L. & Neva, F.A. (1982) Endemic filariasis in the Pacific I. Clinical epidemiological and parasitological aspects. American Journal of Tropical Medicine and Parasitology 31, 942952.Google Scholar
Wynn, T.A., Eltoum, I., Cheever, A.W., Lewis, F.A., Gause, W.C. & Sher, A. (1993) Analysis of cytokine mRNA expression during primary granuloma formation induced by eggs of Schistosoma mansoni. Journal of Immunology 151, 14301440.CrossRefGoogle ScholarPubMed