Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T17:17:20.588Z Has data issue: false hasContentIssue false

Influence of season and host age on wild boar parasites in Corsica using indicator species analysis

Published online by Cambridge University Press:  12 April 2024

J. Foata*
Affiliation:
Laboratory ‘Parasites and Mediterranean Ecosystems’, Faculty of Sciences and Techniques, University of Corsica, 20250 Corte, France.
D. Mouillot
Affiliation:
UMR CNRS-UM115119 ECOLAG, University of Montpellier II CC093, 34095 Montpellier Cedex 5, France.
J.-L. Culioli
Affiliation:
Laboratory ‘Parasites and Mediterranean Ecosystems’, Faculty of Sciences and Techniques, University of Corsica, 20250 Corte, France.
B. Marchand
Affiliation:
Laboratory ‘Parasites and Mediterranean Ecosystems’, Faculty of Sciences and Techniques, University of Corsica, 20250 Corte, France.
*
* Fax: +33 4 95450029, E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The indicator value (Ind Val) method which combines measures of fidelity and specificity has been used in a study on wild boar parasites in Corsica during 2001–2003. Because of its resilience to changes in abundance, IndVal is a particularly effective tool for ecological bioindication. The Ind Val method showed how season can influence the occurrence of parasite species in the wild boar, and also identified parasites as bioindicators relative to host age. The randomization test identified five parasite species having a significant indicator value for the season (the ticks, Hyalomma aegyptium and Rhipicephalus sanguineus, the louse, Haematopinus suis and the nematodes Globocephalus urosubulatus and Ascaris suum and two indicator species of an age class (the nematodes G. urosubulatus and Metastrongylus sp.). Data on species composition and infection levels would help improve the monitoring and management of parasitism in Suidae populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Anderson, R.M. (1987) The role of mathematical models in helminth population biology. International Journal for Parasitology 17, 519529.CrossRefGoogle ScholarPubMed
Anderson, R.C. (2000). Nematode parasites of vertebrates: their development and transmission. 650 pp. Wallingford, Oxon, CABI Publishing.CrossRefGoogle Scholar
Brumpt, E. (1978) Précis de parasitologie. 2120 pp. Paris, Masson.Google Scholar
Byong-Seol, S., Seung-Yull, C. & Jong-Yil, C. (1979) Seasonal fluctuation of Ascaris reinfection incidences in a rural Korean population. Korean Journal of Parasitology 17, 1118.Google Scholar
Cabaret, J. (2004) Parasitisme helminthique en élevage biologique ovin: réalités et moyens de contrôle. INRA Production Animale 17, 145154.CrossRefGoogle Scholar
Combes, C. (2001). Interactions durables. Écologie et évolution du parasitisme. 524 pp. Paris, Masson.Google Scholar
Dardaillon, M. (1984) Le sanglier et le milieu camargais: dynamique coadaptative. 165 pp. Thèse de 3ème cycle, Toulouse.Google Scholar
De-la-Muela, N., Hernandez-de-Lujan, S. & Ferre, I. (2001) Helminths of wild boar in Spain. Journal of Wildlife Diseases 37, 840843.CrossRefGoogle ScholarPubMed
Detsis, V., Diamantopoulos, J. & Kosmas, C. (2000) Collembolan assemblages in Lesvos, Greece. Effects of differences in vegetation and precipitation. Acta Oceologica 21, 149159.CrossRefGoogle Scholar
Drufrêne, M. & Legendre, P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345366.Google Scholar
Elsami, A. & Farsad-Hamdi, S. (1992) Helminth parasites of wild boar, Sus scrofa, in Iran. Journal of Wildlife Diseases 28, 316318.Google Scholar
Fernandez-de-Mera, I.G., Gortazar, C., Vicente, J., Hofle, U. & Fierro, Y. (2003) Wild boar helminths: risks in animal translocations. Veterinary Parasitology 115, 335341.CrossRefGoogle ScholarPubMed
Forrester, D.J., Porter, J.M., Belden, R.C. & Frankenburger, W.B. (1982) Lungworms of feral swine in Florida. Journal of the American Veterinary Medical Association 181, 12781280.Google ScholarPubMed
Fraczak, K. (1974) An attempt at determining the role of parasites as a factor controlling the number of a wild boar (Sus scrofa) population. Wiadomos'ci Parazytologiczne 20, 747749.Google ScholarPubMed
Gadomska, K. (1981) The qualitative and quantitative structure of the helminthocoenosis of wild boar (Sus scrofa L.) living in natural (Kampinos National Park) and breeding conditions. Acta Parasitologica Polonica 28, 151170.Google Scholar
Gerbaldi, P.O. (1975) Contribution à l'étude des helminthoses du gros gibier. 3344 pp. Thèse de Doctorat Vétérinaire Créteil.Google Scholar
Hufnagel, L., Bakonyi, G. & Vasarhelyi, T. (1999) New approach for habitat characterization based on species lists of aquatic and semiaquatic bugs. Environmental Monitoring and Assessment 58, 305316.CrossRefGoogle Scholar
Humbert, J.F. (1992) Helminth parasitism as a factor of mortality among wild ungulates in Europe; Metastrongylus sp. lungworms of the wild boar. Ongules/Ungulates 91, 535538.Google Scholar
Humbert, J.F. & Drouet, J. (1990) Enquête épidémiologique sur la métastrongylose du sanglier (Sus scrofa) en france. Gibier Faune Sauvage 7, 6784.Google Scholar
Humbert, J.F. & Ferté, H. (1986) Le parasitisme helminthique du sanglier en France (Sus scrofa, L.). Symbioses 18, 7584.Google Scholar
Humbert, J.F. & Henry, C. (1989) Studies on the prevalence and the transmisssion of lung and stomach nematodes of the wild boar (Sus scrofa) in France. Journal of Wildlife Diseases 25, 335341.CrossRefGoogle Scholar
Ineson, M.J. (1954) A comparison of the parasites of wild and domestic pigs in New Zealand. Transactions of the Royal Society of New Zealand 82, 579609.Google Scholar
Labruna, M.B., Camargo, L.M.A., Schumaker, T.T.S. & Camargo, E.P. (2002) Parasitism of domestic swine (Sus scrofa) by Amblyomma ticks (Acari: Ixodidae) on a farm at Monte Negro, Western Amazon, Brazil. Journal of Medical Entomology 39, 241243.CrossRefGoogle ScholarPubMed
Latha, B.B., Aiyasami, S.S., Pattabiraman, G., Sivaraman, T. & Rajavelu, G. (2004) Seasonal activity of ticks on small ruminants in Tamil Nadu State, India. Tropical Animal Health and Production 36, 122133.CrossRefGoogle Scholar
Magi, M., Bertani, D.M. & Prati, M.C. (2002) Epidemiological study of the intestinal helminths of wild boar (Sus scrofa) and mouflon (Ovis gmelini musimon) in Central Italy. Parassitologia 44, 203205.Google Scholar
McCune, B. & Mefford, M.J. (1999) PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design. Gleneden Beach, Oregon, USA.Google Scholar
McGeoch, M.A. & Chown, S.L. (1998) Scaling up the value of bioindicators. Trends in Ecology and Evolution 13, 4647.CrossRefGoogle ScholarPubMed
Meirhaeghen, D.A. (1998) Les parasites digestifs et respiratoires du Porc. Aspects épidémiologiques et moyens de lutte. 206 pp. Thèse de doctorat vétérinaire, Université Paul Sabatier.Google Scholar
Mikusinki, G., Gromadzki, M. & Chuylarecki, P. (2001) Woodpeckers as indicators of forest bird diversity. Conservation Biology 15, 208217.CrossRefGoogle Scholar
Mouillot, D., Culioli, J.M. & Do Chi, T. (2002) Indicator species analysis as a test of non-random distribution of species in the context of marine protected areas. Environmental Conservation 29, 385390.CrossRefGoogle Scholar
Pegram, R.G., Clifford, C.M., Walker, J.B. & Keirans, J.E. (1987) Clarification of the Rhipicephalus sangineus group (Acari: Ixodoidea, Ixodidae). I.R. sulcatus (Neuman, 1908) and R. turanicus (Pomeranstev, 1936). Systematic Parasitology 10, 326.CrossRefGoogle Scholar
Rajkovic-Janje, R., Bosnic, S., Rimac, D., Dragicevic, P. & Vinkovic, B. (2002) Prevalence of helminths in wild boar from hunting grounds in eastern Croatia. Zeitschrift für Jagdwissenschaft 48, 261270.Google Scholar
Renjifo, L.M. (2001) Effect of natural and anthropogenic landscape matrices on the abundance of sub-Andean bird species. Ecological Applications 11, 1431.CrossRefGoogle Scholar
Roepstorff, A. & Jorsal, S.E. (1989) Prevalence of helminth infections in swine in Denmark. Veterinary Parasitology 33, 231239.CrossRefGoogle ScholarPubMed
Sale, F.H. (1971) Contribution à l'étude de l'élevage et de la pathologie du sanglier. 149 pp. Thèse de Doctorat Vétérinaire Créteil.Google Scholar
Smith, H.M. Jr., Davidson, W. R., Nettles, V.F. & Gerrish, R.R. (1982) Parasitisms among wild swine in southeastern United States. Journal of the American Veterinary Medical Association 181, 12811284.Google ScholarPubMed
Solaymani-Mohammadi, S., Mobedi, I., Rezaian, M., Massoud, J., Mohebali, M., Hooshyar, H., Ashrafi, K. & Rokni, M.B. (2003) Helminth parasites of the wild boar, Sus scrofa, in Luristan province, western Iran and their public health significance. Journal of Helminthology 77, 263267.CrossRefGoogle ScholarPubMed
Takacs, A. (1996) Data on the endoparasitic infection of wild boar (Sus scrofa, L.) in Hungary. Magyar Allatorvosok Lapja 51, 721724.Google Scholar
Takacs, A. (1997) Contribution to the helminth infestation in wild boar (Sus scrofa L.) in Hungary. Wiener Tierarztliche Monatsschrift 84, 314316.Google Scholar
Uriarte, J., Llorente, M.M. & Valderrabano, J. (2003) Seasonal changes of gastrointestinal nematode burden in sheep under an intensive grazing system. Veterinary Parasitology 118, 7992.CrossRefGoogle ScholarPubMed
Zimmer, K.D., Hanson, M.A. & Butler, M.G. (2000) Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Canadian Journal of Fisheries and Aquatic Sciences 57, 7685.CrossRefGoogle Scholar