Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-21T00:48:35.505Z Has data issue: false hasContentIssue false

Infectivity of Echinostoma friedi miracidia to different snail species under experimental conditions

Published online by Cambridge University Press:  12 April 2024

C. Muñoz-Antoli*
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
M. Trelis
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
R. Toledo
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
J.G. Esteban
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
*
*Fax: (34) 96 354 4769 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The infectivity of Echinostoma friedi (Trematoda: Echinostomatidae) miracidia was studied experimentally in a range of laboratory-reared snails that coexist in the same natural locality, namely Radix peregra, Lymnaea fuscus, L. truncatula (Lymnaeidae), Gyraulus chinensis, Helisoma duryi (Planorbidae) and Physella acuta (Physidae), and snails from different geographical origins acting naturally or experimentally as intermediate hosts of Schistosoma spp., namely Planorbarius metidjensis (from Málaga, Spain), Biomphalaria glabrata (Guadeloupe), B. alexandrina (Egypt) (Planorbidae), Bulinus cernicus (Mauritius), B. globosus (Zambia), B. natalensis (South Africa) and B. truncatus (Niger) (Bulinidae). Six species of snails were found to be susceptible, with the rate of infection ranging from 0 to 36.7%. The highest infection was detected in R. peregra. The low host specificity of E. friedi might have an epidemiological significance as a requisite for a recent establishment in a new geographical area.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Eppert, A., Lewis, F.A., Grzywacz, C., Coura-Filho, P., Caldas, I. & Minchella, D.J. (2002) Distribution of schistosome infections in molluscan hosts at different levels of parasite prevalence. Journal of Parasitology 88, 232236.CrossRefGoogle ScholarPubMed
Gasnier, N., Rondelaud, D., Abrous, M., Carreras, F., Boulard, C., Diez-Baños, P. & Cabaret, J. (2000) Allopatric combination of Fasciola hepatica and Lymnaea truncatula is more efficient than sympatric ones. International Journal for Parasitology 30, 573578.CrossRefGoogle ScholarPubMed
Hassan, A.H., Haberl, B., Hertel, J. & Haas, W. (2003) Miracidia of an Egyptian strain of Schistosoma mansoni differentiate between sympatric snail species. Journal of Parasitology 89, 12481250.CrossRefGoogle ScholarPubMed
Huffman, J.E. & Fried, B. (1990) Echinostoma and echinostomiasis. Advances in Parasitology 29, 215269.CrossRefGoogle ScholarPubMed
Kanev, I. (1994) Life-cycle, delimitation and redescrption of Echinostoma revolutum (Fröelich, 1802) (Trematoda: Echinostomatidae). Systematic Parasitology 28, 125144.CrossRefGoogle Scholar
Kanev, I., Dimitrov, V., Radev, V. & Fried, B. (1995) Redescription of Echinostoma trivolvis (Cort, 1914) with a discussion of its identity. Systematic Parasitology 32, 6170.CrossRefGoogle Scholar
Kostadinova, A. & Gibson, D.I. (2000) The systematics of the echinostomes. pp. 3155 in Fried, B. & Graczyk, T.K. (Eds) Echinostomes as experimental models for biological research, The Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Kostadinova, A., Gibson, D.I., Biserkov, V. & Chipev, N. (2000) Revalidation of Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae) on the basis of the experimental completion of its life-cycle. Systematic Parasitology 45, 81108.CrossRefGoogle ScholarPubMed
Maldonado, A., Vieira, G.O., Garcia, J.S., Rey, L. & Lanfredi, R.M. (2001) Biological aspects of new isolate of Echinostoma paraensei (Trematoda: Echinostomatidae): susceptibility of sympatric snails and the natural vertebrate host. Parasitology Research 87, 853859.Google ScholarPubMed
Muñoz-Antoli, C., Trelis, M., Espert, A., Toledo, R. & Esteban, J.G. (2002) Survival and infectivity of Echinostoma friedi (Trematoda: Echinostomatidae) miracidia and cercariae under experimental conditions. Helminthologia 39, 149154.Google Scholar
Sorensen, R.E. & Minchella, D.J. (2001) Snail–trematode life history interactions: past trends and future directions. Parasitology 123, S3S18.CrossRefGoogle ScholarPubMed
Thomas, F., Guégan, J-F., Michalakis, Y. & Renaud, F. (2000) Parasite and host life-history traits: implications for community ecology and species co-existence. International Journal for Parasitology 30, 669674.CrossRefGoogle ScholarPubMed
Toledo, R., Muñoz-Antoli, C. & Esteban, J.G. (2000) The life-cycle of Echinostoma friedi n.sp. (Trematoda: Echinostomatidae) in Spain and a discussion on the relationships within the ‘ revolutum’ group based on cercarial chaetotaxy. Systematic Parasitology 45, 199217.CrossRefGoogle Scholar
Toledo, R., Muñoz-Antoli, C., Pérez, M. & Esteban, J.G. (1998) Larval trematode infection in freshwater gastropods from the Albufera Natural Park in Spain. Journal of Helminthology 72, 7982.CrossRefGoogle ScholarPubMed