Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T13:01:13.541Z Has data issue: false hasContentIssue false

In vitro anthelmintic activity of crude extracts of selected medicinal plants against Haemonchus contortus from sheep

Published online by Cambridge University Press:  28 March 2012

M. Ahmed*
Affiliation:
Department of Animal Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
M.D. Laing
Affiliation:
Discipline of Plant Pathology, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
I.V. Nsahlai
Affiliation:
Department of Animal Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
*
*Fax: (0027)332605067 E-mail: [email protected]

Abstract

Ethanol extracts of 25 plant species were screened for anthelmintic effects against Haemonchus contortus. Ethanol extracts of each plant were used at various concentrations (10, 20 and 30%) to treat 10-day faecal cultures, incubated at 27°C with control cultures which were treated with ethanol for 48 h. Five plants with high efficacies (Ananas comosus, Aloe ferox, Allium sativum, Lespedeza cuneata and Warburgia salutaris) were selected from the first screening for further investigation using ethanol, dichloromethane and water extracts at four concentrations (2.5, 5, 10 and 20%). Ethanol was the most effective solvent. Larval counts decreased with increasing extract concentrations, of which 10 and 20% had similar effects. Lespedeza cuneata caused more than 70% mortality at all concentrations. However, there remains a need to assess in vivo efficacy of these plants.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Abebe, R., Gebreyohannes, M., Mekuria, S., Abunna, F. & Regassa, A. (2010) Gastrointestinal nematode infections in small ruminants under the traditional husbandry system during the dry season in southern Ethiopia. Tropical Health and Production 42, 11111117.CrossRefGoogle ScholarPubMed
Ahmed, M. (2010) Gastrointestinal (nematode) infections in small ruminants: Epidemiology, anthelmintic efficacy and the effect of wattle tannins. MSc thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa.Google Scholar
Athanasiadou, S.L., Kyriazakis, I., Jackson, F. & Coop, R.L. (2001) The effects of condensed tannins supplementation of food with different protein content on parasitism food intake and performance of sheep infected with Trichostrongylus colubriformis. British Journal of Nutrition 86, 697706.CrossRefGoogle Scholar
Bienvenu, E., Amabeoku, G.J. & Eagles, P.K. (2002) Anticonvulasant activity of aqueous extract of Leonotis leonorus. Phytomedicine 9, 217223.CrossRefGoogle Scholar
Bizimenyera, E.S., Githiori, J.B., Eloff, J.N. & Swan, G.E. (2006) In vitro activity of Peltophorum africanum Sond. (Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubriformis. Veterinary Parasitology 142, 336343.CrossRefGoogle ScholarPubMed
Fennell, C.W., Lindsey, K.L., McGaw, L.J., Sparg, S.G., Stafford, G.I., Elgorashi, E.E., Grace, O.M. & van Staden, J. (2004) Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. Journal of Ethnopharmacology 94, 205217.CrossRefGoogle ScholarPubMed
Ferri, N., Yokoyama, K., Sadilek, M., Paoletti, R., Apitz-Castro, R., Gelb, M.H. & Corsini, A. (2003) Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation. Journal of Pharmacology 138, 811818.Google ScholarPubMed
Gillian, S., Behnke, J.M., Buttle, D.J. & Duce, L.R. (2004) Natural plant cysteine proteinases as anthelmintics? Trends in Parasitology 20, 322327.Google Scholar
Githiori, J.B., Hoglund, J. & Waller, P.J. (2005) Ethnoveterinary plant preparations as livestock dewormers: practices, popular beliefs, pitfalls and prospects for the future. Animal Health Research Review 6, 91103.CrossRefGoogle ScholarPubMed
Hansen, J. & Perry, B. (2008) The epidemiology, diagnosis and control of helminth parasites of ruminants Nairobi, Kenya, International Laboratory for Research on Animal Diseases Press. Electronic version available atwww.fao.org/wairdocs/ILRI/x5492E/x5492E00.HTM (accessed accessed 11 April 2008).Google Scholar
Hördegen, P., Hertzberg, H., Heilmann, J., Langhans, W. & Maurer, V. (2003) The anthelmintic efficacy of five plant products against gastrointestinal Trichostrongylids in artificially infected lambs. Veterinary Parasitology 117, 5160.CrossRefGoogle ScholarPubMed
Hördegen, P., Cabaret, J., Hertzberh, H., Langhans, W. & Maurer, V. (2006) In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyltetrazolium reduction assay. Journal of Ethnopharmacology 108, 8589.CrossRefGoogle Scholar
Iqbal, Z., Nadeem, Q.K., Khan, M.N., Akhtar, M.S. & Waraich, F.N. (2001) In vitro anthelmintic activity of Allium sativum, Zingiber officinale, Curcurbita mexicana and Ficus religiosa. International Journal of Agriculture and Biology 3, 454457.Google Scholar
Kaplan, R.M. (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle ScholarPubMed
Lange, K.C., Olcott, D.D., Miller, J.E., Mosjidis, J.A., Terrill, T.H., Burke, J.M. & Kearney, M.T. (2006) Effect of Sericea lespedeza (Lespedeza cuneata) fed as hay, on natural and experimental Haemonchus contortus infections in lambs. Veterinary Parasitology 141, 273278.CrossRefGoogle ScholarPubMed
Le Dang, Q., Lee, G.Y., Choi, Y.H., Choi, G.J., Jang, K.S., Park, M.S., Soh, H.S., Han, Y.H., Lim, C.H. & Kim, J. (2010) Insecticidal activities of crude extracts and phospholipids from Chenopodium ficifolium against melon and cotton aphid, Aphis gossypii. Crop Protection 29, 11241129.CrossRefGoogle Scholar
Mabusela, W.T., Stephen, A.M. & Botha, M.C. (1990) Carbohydrate polymers from Aloe ferox leaves. Phytochemistry 29, 35553558.CrossRefGoogle Scholar
Maphosa, V., Masika, P.J., Bizimenyera, E.S. & Eloff, J.N. (2010) In vitro anthelmintic activity of crude aqueous extracts of Aloe ferox, Leonotis leonurus and Elephantorrhiza elephantina against Haemonchus contortus. Tropical Animal Health and Production 42, 301307.CrossRefGoogle Scholar
McGaw, L.J. & Eloff, J.N. (2008) Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. Journal of Ethnopharmacology 119, 686699.CrossRefGoogle ScholarPubMed
Menkir, M.S., Uggla, A. & Waller, P.J. (2006) Epidemiology and seasonal dynamics of gastrointestinal nematode infections of sheep in a semi-arid region of eastern Ethiopia. Veterinary Parasitology 143, 311321.Google Scholar
Min, B.R. & Hart, S.P. (2003) Tannins for suppression of internal parasites. Journal of Animal Science 81, 102109.Google Scholar
Min, B.R., Pomroy, W.E., Hart, S.P. & Sahlu, T. (2004) The effect of short-term consumption of a forage containing condensed tannins on gastro-intestinal nematode parasite infections in grazing wether goats. Small Ruminant Research 51, 279283.CrossRefGoogle Scholar
Mohanlall, V. & Odhav, B. (2009) Furans and furanones with antimycotoxigenic activity isolated from Warburgia salutaris (Canellaceae). Journal of Medicinal Plants Research 3, 231240.Google Scholar
Nakanishi, Y., Takayama, K. & Yasuda, N. (2011) Effects of Japanese bead-tree (Melia azedarach var. subtripinnata) on gastrointestinal parasites in goats. Japan Agricultural Research Quarterly 45, 117121.CrossRefGoogle Scholar
Niezen, J.H., Waghorn, T.S., Charleston, W.A. & Waghorn, G.C. (1995) Growth and gastrointestinal nematode parasitism in lambs grazing lucerne (Medicago sativa) or sulla (Hedysarum coronarium) which contain condensed tannins. Journal of Agricultural Science 125, 281289.CrossRefGoogle Scholar
Pomroy, W.E., Hart, S.P. & Min, B.R. (2002) Titration of efficacy of ivermectin and moxidectin against an ivermectin-resistant Haemonchus contortus derived from goats in the field. Journal of Animal Science 80, 30(abstract).Google Scholar
SAS (2000) Statistical Analysis System user's guide (version 8). Cary, North Carolina, USA, SAS Institute.Google Scholar
Singh, T.U., Kumar, D., Tandan, S.K. & Mishra, S.K. (2009) Inhibitory effect of essential oils of Allium sativum and Piper longum on spontaneous muscular activity of liver fluke, Fasciola gigantica. Experimental Parasitology 123, 302308.CrossRefGoogle ScholarPubMed
Sparg, S.G., Van Staden, J. & Jager, A.K. (2002) Pharmacological and phytochemical screening of two Hyacinthaceae species: Scilla natalensis and Ledebouria ovatifolia. Journal of Ethnopharmacology 80, 95101.CrossRefGoogle ScholarPubMed
Stepek, G., Lowe, A.E., Buttle, D.J., Duce, I.R. & Behnke, J.M. (2006) In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Thirchuris muris. Parasitology 132, 681689.CrossRefGoogle ScholarPubMed
Sujon, M.A., Mostofa, M., Jahan, M.S., Das, A.R. & Rob, S. (2008) Studies on medicinal plants against gastrointestinal nematodes of goats. Bangladesh Journal of Veterinary Medicine 6, 179183.CrossRefGoogle Scholar
Van Wyk, J.A., Stenson, M.O., Vander Merwe, J.S., Vorster, R.J. & Viljoen, P.G. (1999) Anthelmintic resistance in South Africa: surveys indicate an extremely serious situation in sheep and goat farming. Onderstepoort Journal of Veterinary Research 66, 273284.Google ScholarPubMed
Waller, P.J., Knox, M.R. & Faedo, M. (2001) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: feeding and block studies with Duddingtonia flagrans. Veterinary Parasitology 102, 321330.CrossRefGoogle ScholarPubMed