Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T12:01:43.110Z Has data issue: false hasContentIssue false

In vitro activity of essential oils of free and nanostructured Melaleuca alternifolia and of terpinen-4-ol on eggs and larvae of Haemonchus contortus

Published online by Cambridge University Press:  22 June 2015

T.H. Grando*
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
M.F. de Sá
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
M.D. Baldissera
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
C.B. Oliveira
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
M.E. de Souza
Affiliation:
Department of Microbiology, Centro Universitário Franciscano – Unifra – Santa Maria, Rio Grande do Sul, Brazil
R.P. Raffin
Affiliation:
Department of Microbiology, Centro Universitário Franciscano – Unifra – Santa Maria, Rio Grande do Sul, Brazil
R.C.V. Santos
Affiliation:
Department of Microbiology, Centro Universitário Franciscano – Unifra – Santa Maria, Rio Grande do Sul, Brazil
R. Domingues
Affiliation:
Animal Health Laboratory, Empresa Brasileira de Pesquisa Agropecuária – Embrapa, Bagé, Rio Grande do Sul, Brazil
A.P. Minho
Affiliation:
Animal Health Laboratory, Empresa Brasileira de Pesquisa Agropecuária – Embrapa, Bagé, Rio Grande do Sul, Brazil
M.L.R. Leal
Affiliation:
Department of Large Animal, Universidade Federal Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
S.G. Monteiro*
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
*
*Fax: +55 55 3220-8958 E-mail: [email protected]; [email protected]
*Fax: +55 55 3220-8958 E-mail: [email protected]; [email protected]

Abstract

Haemonchus contortus is one of the major gastrointestinal nematodes responsible for significant economic and production losses of sheep. Diseases caused by this species lack effective anthelmintic products, and the search for new compounds to replace synthetic anthelmintics has been extensive. The present investigation assesses the in vitro activity of the essential oil of melaleuca (Melaleuca alternifolia), both free (TTO) and nanostructured (nanoTTO), and terpinen-4-ol (terp-4-ol) on eggs and larvae of H. contortus. Tests of egg hatching (EHT) and inhibition of larval migration (LMIT) were used to assess the in vitro efficacy of TTO, nanoTTO and terp-4-ol. Using EHT, at a concentration of 3.5 mg/ml, 100% inhibition occurred using TTO and terp-4-ol, with LC50 values of 0.43 and 0.63 mg/ml, and LC90 values of 1.75 mg/ml and 3.12 mg/ml, respectively. NanoTTO had lower activity, with 82.6% inhibition at the same concentration. Using LMIT, TTO and nanoTTO had a similar activity with 88.0% and 84.8% inhibition, respectively, at a concentration of 56 mg/ml. Terp-4-ol had a greater effect on larvae, with 85.7% inhibition at a concentration of 56 mg/ml and 82.4% at 3.5 mg/ml, demonstrating high activity at the lowest concentration tested. Therefore, the results indicate that all substances tested showed ovicidal and larvicidal activity against H. contortus. TTO, terp-4-ol and, mainly, nanoTTO may be targeted in in vivo studies, besides being a promising line of research into the control and treatment of veterinary important helminths.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, J., Hildreth, M.B. & Reese, R.N. (2014) In vitro screening of forty medicinal plant extracts from the United States Northern Great Plains for anthelmintic activity against Haemonchus contortus . Veterinary Parasitology 201, 7581.Google Scholar
Adams, R.P. (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. 456 pp. Illinois, USA, Allured Publishing Corporation.Google Scholar
Anthony, J.P., Fyfe, L. & Smith, H. (2005) Plant active components – a resource for antiparasitic agents? Trends in Parasitology 21, 462468.Google Scholar
Baldissera, M.D., Da Silva, A.S., Oliveira, C.B., Santos, R.C., Vaucher, R.A., Raffin, R.P., Gomes, P., Dambros, M.G., Miletti, L.C., Boligon, A.A., Athayde, M.L. & Monteiro, S.G. (2014) Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo using mice as experimental model. Experimental Parasitology 141, 2127.CrossRefGoogle ScholarPubMed
Benchaar, C., Calsamiglia, S., Chaves, A.V., Fraser, G.R., Colombatto, D., McAllister, T.A. & Beauchemin, K.A. (2008) A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology 145, 209228.Google Scholar
Bizimenyera, E.S., Githiori, J.B., Eloff, J.N. & Swan, G.E. (2006) In vitro activity of Peltophorum africanum Sond. (Fabacea) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubriformis . Veterinary Parasitology 142, 336343.Google Scholar
Caldefie-Chézet, F., Fusillier, C., Jarde, T., Laroye, H., Damez, M., Vasson, M.P. & Guillot, J. (2006) Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytotherapic Research 20, 364370.Google Scholar
Carson, C.F. & Riley, T.V. (1993) Antimicrobial activity of the essential oil of Melaleuca alternifolia . Letters in Applied Microbiology 16, 4955.Google Scholar
Coles, G.C., Bauerb, C., Borgsteedec, F.H.M., Geertsd, S., Kleie, T.R., Taylora, M.A. & Wallerf, P.J. (1992) World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3544.Google Scholar
Coles, G.C., Jackson, F., Pomroy, W.E., Prichard, R.K., von Samson-Himmelstjerna, G., Silvestre, A., Taylor, M.A. & Vercruysse, J. (2006) The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 136, 167185.Google Scholar
Demeler, J., Küttlerb, U., El-Abdellatic, A., Staffordd, K., Rydzike, A., Varadyf, M., Kenyong, F., Colesd, G., Höglunde, J., Jacksong, F., Vercruyssec, J. & Samson-Himmelstjerna, G. (2010) Standardization of the larval migration inhibition test for the detection of resistance to ivermectin in gastrointestinal nematodes of ruminants. Veterinary Parasitology 174, 5864.Google Scholar
Fernandes, L.H., Seno, M.C.Z., Amarante, A.F.T., Souza, H. & Belluzzo, C.E.C. (2004) Efeito do pastejo rotacionado e alternado com bovinos adultos no controle da verminose em ovelhas. Arquivo Brasileiro Veterinária Zootecnia 56, 733740.CrossRefGoogle Scholar
Furneri, P.M., Paolino, D., Saija, A., Marino, A. & Bisignano, G. (2006) In vitro antimycoplasmal activity of Melaleuca alternifolia essential oil. Journal of Antimicrobial Chemotherapy 58, 706707.Google Scholar
Hammer, K.A., Carson, C.F. & Riley, T.V. (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology 95, 853860.Google Scholar
Hart, P.H., Brand, C., Carson, C.F., Riley, T.V., Prager, R.H. & Finlay–Jones, J.J. (2000) Terpin-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflammation Research 49, 619626.Google Scholar
Hristov, A.N., McAllister, T.A., Van Herk, F.H., Cheng, K.-J., Newbold, C.J. & Cheeke, P.R. (1999) Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. Journal of Animal Science 77, 25542563.Google Scholar
International Standards Organization. (1996) Oil of Melaleuca, terpinen- 4-ol type (tea tree oil). ISO 4730. Geneva, Switzerland, ISO.Google Scholar
Katiki, L.M., Chagas, A.C.S., Bizzo, H.R., Ferreira, J.F.S. & Amarante, A.F.T. (2011) Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Veterinary Parasitology 183, 103108.Google Scholar
Macedo, I.T., Bevilaqua, C.M.L., Oliveira, L.M.B., Camurça-Vasconcelos, A.L.F., Vieira, L.S., Oliveira, F.R., Queiroz, E.M. Jr, Portela, B.G., Barros, R.S. & Chagas, A.C.S. (2009) Atividade ovicida e larvicida in vitro do óleo essential de Eucalyptus globulus sobre Haemonchus contortus . Revista Brasileira de Parasitologia Veterinária 18, 6266.Google Scholar
Macedo, I.T.F., Bevilaqua, C.M., Oliveira, L.M., Camurça-Vasconcelos, A.L., Vieira, L.S., Oliveira, F.R., Queiroz, E.M. Jr, Tomá, A.R. & Nascimento, N.R.F. (2010) Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Veterinary Parasitology 173, 9398.Google Scholar
Macedo, I.T., Bevilaqua, C.M., Oliveira, L.M., Camurça-Vasconcelos, A.L., Vieira, L.S. & Amóra Sdos, S. (2011) Evaluation of Eucalyptus citriodora essential oil on goat gastrointestinal nematodes. Revista Brasileira de Parasitologia Veterinária 20, 223227.Google Scholar
Mulla, M.S. & Su, T. (1999) Activity and biological effects of NET products against arthropods of medical and veterinary importance. American Mosquito Control Association 15, 133152.Google Scholar
Payne, S.E., Kotze, A.C., Durmic, Z. & Vercoe, P.E. (2013) Australian plants show anthelmintic activity toward equine cyathostomins in vitro . Veterinary Parasitology 196, 153160.Google Scholar
Pazinato, R., Klauck, V., Volpato, A., Tonin, A.A., Santos, R.C., de Souza, M.E., Vaucher, R.A., Raffin, R., Gomes, P., Felippi, C.C., Stefani, L.M. & Da Silva, A.S. (2014) Influence of tea tree oil (Melaleuca alternifolia) on the cattle tick Rhipicephalus microplus . Experimental and Applied Acarology 63, 7783.Google Scholar
Roco, M.C. (2001) International strategy for nanotechnology research and development. Journal of Nanoparticle Research 3, 353360.Google Scholar
Sandoval-Castro, C.A., Torres-Acosta, J.F.J., Hoste, H., Salem, A.Z.M. & Chan-Péreza, J.I. (2012) Using plant bioactive materials to control gastrointestinal tract helminths in livestock. Animal Feed Science and Technology 176, 192201.Google Scholar
Torres-Acosta, J.F.J. & Hoste, H. (2008) Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Ruminant Research 77, 159173.Google Scholar
Ueno, H. & Gonçalves, P.C. (1994) Manual para diagnóstico das helmintoses de ruminantes. 3rd edn. 166 pp. Tokyo, Japan International Cooperation Agency.Google Scholar
Vidal, F., Vidal, J.C., Gadelha, A.P.R., Lopes, C.S., Coelho, M.G.P. & Monteiro-Leal, L.H. (2007) Giardia lamblia: the effects of extracts and fractions from Mentha ×  piperita Lin. (Lamiaceae) on trophozoites. Experimental Parasitology 115, 2531.Google Scholar
Von Samson-Himmelstjerna, G., Coles, G.C., Jackson, F., Bauer, C., Borgsteede, F., Cirak, V.Y., Demeler, J., Donnan, A., Dorny, P., Epe, C., Harder, A., Höglund, J., Kaminsky, R., Kerboeuf, D., Küttler, U., Papadopoulos, E., Posedi, J., Small, J., Várady, M., Vercruysse, J. & Wirtherle, N. (2009) Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes. Parasitology Research 105, 825834.Google Scholar
Wood, I.B., Amaral, N.K., Bairden, K., Duncan, J.L., Kassai, T., Malone, J.B. Jr, Pankavich, J.A., Reinecke, R.K., Slocombe, O. & Taylor, S.M. (1995) World Association for the Advancement of Veterinary Parasitology (WAAVP) second edition of guidelines for evaluating the efficacy of anthelmintics in 20 ruminants (bovine, ovine, caprine). Veterinary Parasitology 58, 181213.Google Scholar
Zanotto-Filho, A., Braganhol, E., Edelweiss, M.I., Behr, G.A., Zanin, R., Schröder, R., Simões-Pires, A., Battastini, A.M. & Moreira, J.C. (2012) The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. Journal of Nutritional Biochemistry 23, 591601.CrossRefGoogle ScholarPubMed
Zhu, L., Dai, J.L., Yang, L. & Qiu, J. (2013) In vitro ovicidal and larvicidal activity of the essential oil of Artemisia lancea against Haemonchus contortus (Strongylida). Veterinary Parasitology 195, 112117.Google Scholar