Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:42:18.032Z Has data issue: false hasContentIssue false

In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes

Published online by Cambridge University Press:  24 September 2010

D. Ndjonka*
Affiliation:
Faculty of Science, University of Ngaoundere, Cameroon Institute for Zoophysiology, Hindenburgplatz 55, 48143Muenster, Germany
C. Agyare
Affiliation:
Institute for Pharmaceutical Biology and Phytochemistry, Hittorfstrasse 56, 48149Muenster, Germany
K. Lüersen
Affiliation:
Institute for Zoophysiology, Hindenburgplatz 55, 48143Muenster, Germany
B. Djafsia
Affiliation:
Faculty of Science, University of Ngaoundere, Cameroon
D. Achukwi
Affiliation:
Parasitology Laboratory, Institute of Agricultural Research for Development, Wakwa Regional Centre, P.O. Box 65, Ngaoundere, Cameroon
E.N. Nukenine
Affiliation:
Faculty of Science, University of Ngaoundere, Cameroon
A. Hensel
Affiliation:
Institute for Pharmaceutical Biology and Phytochemistry, Hittorfstrasse 56, 48149Muenster, Germany
E. Liebau
Affiliation:
Institute for Zoophysiology, Hindenburgplatz 55, 48143Muenster, Germany
*

Abstract

Ethanolic and aqueous extracts of selected medicinal plants from Cameroon and Ghana were assessed for their in vitro anthelmintic activity by using the bovine filarial parasite Onchocerca ochengi and the free living nematode Caenorhabditis elegans, a model organism for research on nematode parasites. Worms were incubated in the presence of different concentrations of extracts and inhibitory effects were monitored at different time points. Among the extracts used in this study, ethanolic extracts of Anogeissus leiocarpus, Khaya senegalensis, Euphorbia hirta and aqueous extracts from Annona senegalensis and Parquetina nigrescens affected the growth and survival of C. elegans and O. ochengi significantly. The mortality was concentration dependent with an LC50 ranging between 0.38 and 4.00 mg/ml for C. elegans (after 72 h) and between 0.08 and 0.55 mg/ml for O. ochengi after a 24 h incubation time. Preliminary phytochemical screenings on these extracts revealed the presence of flavonoids, alkaloids, saponins, carbohydrates and tannins in the extracts. Accordingly, application of A. leiocarpus, K. senegalensis, E. hirta and A. senegalensis extracts could provide alternatives in the control of helminthic infections.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adenola, I.O., Fagbemi, B.O. & Idowu, S.O. (2009) Bioseparation and activity of Khaya senegalensis fractions against infestive larvae of Haemonchus contorsus. Veterinary Parasitology 165, 170174.CrossRefGoogle Scholar
Agyare, C., Asase, A., Niehues, M., Lechtenberg, M., Deters, A. & Hensel, A. (2009) Ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. Journal of Ethnopharmacology 125, 393403.CrossRefGoogle ScholarPubMed
Akah, P.A., Orisakwe, O.E., Gamaniel, K.S. & Shittu, A. (1998) Evaluation of Nigerian traditional medicines: effects of some Nigeria folk remedies on peptic ulcer. Journal of Ethnopharmacology 62, 123127.CrossRefGoogle ScholarPubMed
Alawa, C.B.I., Adamu, A.M., Gefu, J.O., Ajanusi, O.J., Abdu, P.A., Chiezey, N.P., Alawa, J.N. & Bowman, D.D. (2003) In vivo screening of two Nigerian medicinal plants (Vernonia amygdalina and Annona senegalensis) for anthelmintic activity. Veterinary Parasitology 113, 7381.CrossRefGoogle Scholar
Basanez, M.G., Pion, S.D.S., Churcher, T.S., Breitling, L.P., Little, M.P. & Boussinesq, M. (2006) River blindness: a success story under threat? PLoS Medicine 3, 14541460.CrossRefGoogle ScholarPubMed
Borsboom, G.J., Boatin, B.A., Nagelkerke, N.J., Agoua, H., Akpoboua, K.L., Alley, E.W., Bissan, Y., Renz, A., Yameogo, L., Remme, J.H. & Habbema, J.D. (2003) Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West-Africa. Filaria Journal 2, 8.CrossRefGoogle ScholarPubMed
Burglin, T.R., Lobos, E. & Blaxter, M.L. (1998) Caenorhabditis elegans as a model for parasitic nematodes. International Journal of Parasitology 28, 395411.CrossRefGoogle Scholar
Burkill, H.M. (1997) Useful plants of West Tropical Africa. 2nd edn.Kew, United Kingdom, Royal Botanic Gardens.Google Scholar
Eguale, T., Tilahun, G., Debella, A., Feleke, A. & Makonnen, E. (2007) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus. Journal of Ethnopharmacology 110, 428433.CrossRefGoogle ScholarPubMed
Fabricant, D.S. & Farnsworth, N.R. (2001) The value of plants used in traditional medicines for drug discovery. Environment Health Perspectives 109, 6975.Google ScholarPubMed
Fakae, B.B., Campbell, A.M., Barrett, J., Scott, I.M., Teesdale-Spittle, P.H., Liebau, E. & Brophy, P.M. (2000) Inhibition of glutathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytotherapy Research 14, 630634.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Fall, D., Sambou, B., Seck, M., Wele, A., Ndoye, I., Gleye, C. & Laurens, A. (2008) Enhancing the anthelminthic activity roots of Annona sengalensis. Dakar Medical 53, 6167.Google ScholarPubMed
Gilbert, J., Nfon, C.K., Makepeace, B.L., Njongmeta, L.M., Hastings, I.M., Pfarr, K.M., Renz, A., Tanya, V.N. & Trees, A.J. (2005) Antibiotic chemotherapy of onchocerciasis: in a bovine model, killing of adult parasites requires a sustained depletion of endosymbiotic bacteria (Wolbachiaf species). Journal of Infectious Diseases 192, 14831493.CrossRefGoogle Scholar
Glasl, H. (1983) Zur Photometrie in der Drogenstandisierung. Deutsche Apotheker Zeitung 123, 19791987.Google Scholar
Hammond, J.A., Fielding, D. & Bishop, S.C. (1997) Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Community 21, 213228.CrossRefGoogle ScholarPubMed
Harborne, J.F. (1998) Phytochemical methods. 2nd edn.London, Chapman and Hall.Google Scholar
Igweh, A.C. & Onabanjo, A.O. (1989) Chemotherapeutic effects of Annona senegalensis in Trypanosoma brucei brucei. Annals of Tropical Medicine and Parasitology 83, 527534.CrossRefGoogle ScholarPubMed
Kampkotter, A., Gombitang-Nkwonkam, C., Zurawski, R.F., Timpel, C., Chovolou, Y., Watjen, W. & Kahl, R. (2007) Investigations of protective effects of the Xavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234, 113123.CrossRefGoogle ScholarPubMed
Lenaerts, I., Walker, G.A., Hoorebeke, L.V., Gems, D. & Vanfleteren, J.R. (2008) Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. Journal of Gerontology 63, 242252.Google ScholarPubMed
Monglo, D., Njongmeta, L.M., Musongong, G., Ngassoum, M. & Nukenine, E.N. (2006) Evaluation of anthelminthic potential of ethanolic plant extracts from Northern Cameroon against eggs and infective larvae of Haemonchus contortus. Journal of Biological Sciences 6, 426433.CrossRefGoogle Scholar
Musongong, G., Nukenine, E.N., Ngassoum, M., Gangue, T., Messine, O., Fokunang, C.N., Zalom, F.G., Njongmeta, L.M. & Tanya, V. (2004) In vitro toxicity of ethanolic plant extracts from Adamawa Province, Cameroon to infective larvae of Strongyloides papillosus. Journal of Biological Sciences 4, 763767.Google Scholar
Nfon, C.K., Makepeace, B.L., Njongmeta, L.M., Tanya, V.N. & Trees, A.J. (2007) Lack of resistance after re-exposure of cattle cured of Onchocerca ochengi infection with oxytetracycline. American Journal of Tropical Medicine and Hygiene 76, 6772.CrossRefGoogle ScholarPubMed
Njoku, C.J., Okeyode, O.E. & Asuzu, I.U. (1996) The anthelmintic activities of Pleicocarpa bicarpellata leaf aqueous extract. Fitoterapia 67, 339343.Google Scholar
Osei-Tweneboana, M.Y., Eng, J.K.L., Boakye, D.A., Gyapong, J.O. & Prichard, R.K. (2007) Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 20212029.CrossRefGoogle Scholar
Pfarr, K.M. & Hoerauf, A.M. (2006) Antibiotics which target the Wolbachia endosymbionts of filarial parasites: a new strategy for control of filariasis and amelioration of pathology. Mini Review of Medicine and Chemistry 6, 203210.CrossRefGoogle ScholarPubMed
Tona, G.L., Cimanga, R.K., Kambu, O.K., Totte, J., Pieters, L. & Vlietinck, A.J. (2009) Phytochemical screening and in vitro antiamoebic activity of extracts from some antidiarrhoeal medicinal plants used in Kinshasa, Democratic Republic of Congo. Recent Progress in Medicinal Plants 25, 209224.Google Scholar
Wahl, G., Enyong, P., Ngosso, A., Schibel, J.M., Moyou, R., Tubbesing, H., Ekale, D. & Renz, A. (1998) Onchocerca ochengi: epidemiological evidence of cross-protection against Onchocerca volvulus in man. Parasitology 116, 349362.CrossRefGoogle ScholarPubMed
Wixon, J., Blaxter, M.L., Hope, I., Barstead, R. & Kim, S. (2000) Caenorhabditis elegans. Yeast 17, 3742.Google ScholarPubMed
World Health Organization, (1995) Onchocerciasis and its control. Report of a WHO Expert Committee on Onchocerciasis Control. WHO Technical Report Series 852. Geneva, World Health Organization.Google Scholar