Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-26T02:30:44.272Z Has data issue: false hasContentIssue false

The impact of ivermectin-loaded solid lipid nanoparticles on the enteric phase of experimental trichinellosis

Published online by Cambridge University Press:  22 April 2025

S.K. Hammad*
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
M.H. Almotayam
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
A.S.N. Mohamed
Affiliation:
Department of Medical Parasitology, Fakous Faculty of Medicine, Fakous, Egypt
T.I. Farag
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
*
Corresponding author: S.K. Hammad; Email: [email protected]

Abstract

Trichinellosis is a global zoonotic disease affecting humans and nearly all animal species. The intestinal (enteric) phase of trichinellosis is critical, as it determines the course and prognosis of the disease. The medications used in the management of trichinellosis demonstrate inadequate bioavailability, along with a significant level of resistance. Therefore, there is a need for the development of novel agents that enhance the bioavailability of administered medications. Nanobiotechnology has emerged as a significant strategy in treating parasitic diseases. This study examined the use of solid lipid nanoparticles (SLNs) to improve the efficacy of oral ivermectin (IVM) in treating the enteric phase of trichinellosis. Thirty-five Swiss albino mice were divided into seven equal groups as follows: negative control, positive control, albendazole, ivermectin, SLNs, ivermectin loaded on solid lipid nanoparticles (IVM-SLNs), and a combination of IVM-SLNs and albendazole. Mice were sacrificed on the seventh day post-infection. The drugs’ effects were assessed using parasitological, biochemical, histological, histochemical and immunohistochemical analyses. The co-administration of albendazole and IVM-SLNs resulted in a significant decrease in adult burden, inflammatory cell infiltration, and apoptosis. Furthermore, a significant reduction in Cyclooxygenase-2 (COX-2) expression was observed compared to the infected untreated control group, along with improved liver and kidney function indices. In conclusion, the potent trichinocidal effect of a single oral dose of IVM-SLNs against Trichinella adults makes them a promising alternative or adjunct to existing nematicidal agents.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abd-Rabou, A, El-Hamed, W and Faramawy, A (2021) Therapeutic efficacy of Curcuma and pomelo loaded chitosan nanoparticles in intestinal murine trichinellosis. Egyptian Journal of Chemistry. 65(2), 551564. https://doi.org/10.21608/ejchem.2021.102400.4750.Google Scholar
Abou Rayia, DM, Saad, AE, Ashour, DS and Oreiby, RM (2017) Implication of artemisinin nematocidal activity on experimental trichinellosis: in vitro and in vivo studies. Parasitology International 66(2), 5663. https://doi.org/10.1016/j.parint.2016.11.012.CrossRefGoogle ScholarPubMed
Abuelenain, G, Fahmy, Z, Elshennawy, A, Fahmy, A, Ali, E, Hammam, O and Abdel-Aziz, A-W (2021) The potency of Lepidium sativum and Commiphora molmol extracts on Trichinella spiralis stages and host interaction. Advances in Animal and Veterinary Sciences 9(9), 13761382. https://doi.org/10.17582/journal.aavs/2021/9.9.1376.1382.CrossRefGoogle Scholar
Adolph, TE, Mayr, L, Grabherr, F and Tilg, H (2018) Paneth cells and their antimicrobials in intestinal immunity. Current Pharmaceutical Design 24(10), 11211129. https://doi.org/10.2174/1381612824666180327161947.CrossRefGoogle ScholarPubMed
Akanda, M, Mithu, MSH and Douroumis, D (2023) Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. Journal of Drug Delivery Science and Technology 86, 104709. https://doi.org/10.1016/j.jddst.2023.104709.CrossRefGoogle Scholar
Akiho, H, Deng, Y, Blennerhassett, P, Kanbayashi, H and Collins, SM (2005) Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction Gastroenterology 129(1), 131141. https://doi.org/10.1053/j.gastro.2005.03.049.CrossRefGoogle Scholar
Arise, R and Malomo, S (2008) Effects of ivermectin and albendazole on some liver and kidney function indices in rats. African Journal of Biochemistry Research 3(5), 190197.Google Scholar
Aryannejad, A, Tabary, M, Noroozi, N, Mashinchi, B, Iranshahi, S, Tavangar, SM, Mohammad Jafari, R, Rashidian, A and Dehpour, AR (2022) Anti-inflammatory effects of ivermectin in the treatment of acetic acid-induced colitis in rats: Involvement of GABA(B) receptors. Digestive Diseases and Sciences 67(8), 36723682. https://doi.org/10.1007/s10620-021-07258-x.CrossRefGoogle ScholarPubMed
Attia, RA, Mahmoud, AE, Farrag, HM, Makboul, R, Mohamed, ME and Ibraheim, Z (2015) Effect of myrrh and thyme on Trichinella spiralis enteral and parenteral phases with inducible nitric oxide expression in mice. Mem Inst Oswaldo Cruz 110(8), 10351041. https://doi.org/10.1590/0074-02760150295.CrossRefGoogle ScholarPubMed
Bahari, L and Hamishehkar, H (2016) The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Advanced Pharmaceutical Bulletin 6(2), 143151. https://doi.org/10.15171/apb.2016.021.CrossRefGoogle Scholar
Bai, SH and Ogbourne, S (2016) Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere 154, 204214. https://doi.org/10.1016/j.chemosphere.2016.03.113.CrossRefGoogle ScholarPubMed
Bancroft, JD and Gamble, M (2002) Theory and Practice of Histological techniques, 5th edn. London: Churchill Livingstone London.Google Scholar
Barbara, G, De Giorgio, R, Deng, Y, Vallance, B, Blennerhassett, P and Collins, SM (2001) Role of immunologic factors and cyclooxygenase 2 in persistent postinfective enteric muscle dysfunction in mice. Gastroenterology 120(7), 17291736. https://doi.org/10.1053/gast.2001.24847.CrossRefGoogle ScholarPubMed
Barbara, G, Vallance, BA and Collins, SM (1997) Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology 113(4), 12241232. https://doi.org/10.1053/gast.1997.v113.pm9322517.CrossRefGoogle ScholarPubMed
Basyoni, MM and El-Sabaa, AA (2013) Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean Journal of Parasitology 51(3), 297304. https://doi.org/10.3347/kjp.2013.51.3.297.CrossRefGoogle ScholarPubMed
Bergmeyer, HU, Horder, M and Rej, R (1986) International federation of clinical chemistry (IFCC). Journal of Clinical Chemistry and Clinical Biochemistry 24(7), 497510. https://doi.org/10.1515/cclm.1986.24.7.481.Google ScholarPubMed
Bevins, CL and Salzman, NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology 9(5), 356368. https://doi.org/10.1038/nrmicro2546.CrossRefGoogle ScholarPubMed
Buchwalow, IB and Böcker, W (2010) Diagnostic Immunohistochemistry. In Immunohistochemistry: Basics and Methods. Berlin: Springer, 109127.CrossRefGoogle Scholar
Busher, JT (1990) Serum albumin and globulin. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd edn. Boston: Butterworths, 497499.Google Scholar
Castañeda-Marín, E, Gonzalez-Gonzalez, A, Grau-Bocanegra, R and Caballero-Alvarado, J (2021) Uso de ivermectina en pacientes con la COVID-19: Una revisión narrativa. Revista del Cuerpo Médico del HNAAA 13(4), 440445. https://doi.org/10.35434/rcmhnaaa.2020.134.780.CrossRefGoogle Scholar
Chieco, P and Derenzini, M (1999) The Feulgen reaction 75 years on. Histochemistry and Cell Biology 111(5), 345358. https://doi.org/10.1007/s004180050367.CrossRefGoogle Scholar
de Sá Coutinho, D, Pacheco, MT, Frozza, RL and Bernardi, A (2018) Anti-inflammatory effects of resveratrol: Mechanistic insights. International Journal of Molecular Sciences 19(6), 1812. https://doi.org/10.3390/ijms19061812.CrossRefGoogle ScholarPubMed
Dolatabadi, JEN, Hamishehkar, H and Valizadeh, H (2015) Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: Solid-state characterization and aerosol dispersion performance. Drug Development and Industrial Pharmacy 41(9), 14311437. https://doi.org/10.3109/03639045.2014.956111.CrossRefGoogle Scholar
Doumas, BT, Watson, WA and Biggs, HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clinica chimica acta 31(1), 8796. https://doi.org/10.1016/0009-8981(71)90365-2.CrossRefGoogle ScholarPubMed
Dunn, IJ and Wright, KA (1985) Cell injury caused by Trichinella spiralis in the mucosal epithelium of b10a mice. The Journal of Parasitology 71(6), 757766. https://doi.org/10.2307/3281709.CrossRefGoogle ScholarPubMed
El-Azzouni, MZ (1997) Effect of ivermectin on experimental trichinosis. Journal of Egyptian Society of Parasitology 27(2), 331340.Google ScholarPubMed
El Saftawy, E, Aboulhoda, B, Hassan, F, Ismail, M, Alghamdi, M, Hussein, S and Amin, NJH (2024) ACV with/without IVM: A new talk on intestinal CDX2 and muscular CD34 and Cyclin D1 during Trichinella spiralis infection. Helminthologia 61(2), 124. https://doi.org/10.2478/helm-2024-0013.CrossRefGoogle ScholarPubMed
Eldem, T, Speiser, P and Hincal, A (1991) Optimization of spray-dried and -congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharmaceutical Research 8(1), 4754. https://doi.org/10.1023/a:1015874121860.CrossRefGoogle ScholarPubMed
Elgendy, DI, Othman, AA, Hasby Saad, MA, Soliman, NA and Mwafy, SE (2020) Resveratrol reduces oxidative damage and inflammation in mice infected with Trichinella spiralis. Journal of Helminthology 94, e140. https://doi.org/10.1017/s0022149x20000206.CrossRefGoogle ScholarPubMed
Elguindy, D, Ashour, D, Shamloula, M and Assad, I (2019) Preliminary study on the role of toll-like receptor-4 antagonist in treatment of Trichinella spiralis infection. Tanta Medical Journal 47(2), 52. https://doi.org/10.4103/tmj.tmj_17_18.CrossRefGoogle Scholar
Elmehy, DA, Gamea, GA, El-Guindy, DM, Tahoon, DM, Elkholy, RA and Zoghroban, HS (2024) Moxidectin versus ivermectin in the prevention and treatment of acute and chronic experimental trichinellosis. Experimental Parasitology 262, 108775. https://doi.org/10.1016/j.exppara.2024.108775.CrossRefGoogle ScholarPubMed
Elmehy, DA, Hasby Saad, MA, El Maghraby, GM, Arafa, MF, Soliman, NA, Elkaliny, HH and Elgendy, DI (2021) Niosomal versus nano-crystalline ivermectin against different stages of Trichinella spiralis infection in mice. Parasitology Research 120(7), 26412658. https://doi.org/10.1007/s00436-021-07172-1.CrossRefGoogle ScholarPubMed
Fadil, KHA, Mahmoud, EM, El-Ahl, S, Abd-Elaal, AA, El-Shafaey, AAM, Badr, M, Elesawy, YF, A, MM, Hamed, AMR, Abdel-Shafi, IR, Reda, AM, Elsayed, MDA and Abdeltawab, MSA (2022) Investigation of the effect of the calcium channel blocker, verapamil, on the parasite burden, inflammatory response and angiogenesis in experimental Trichinella spiralis infection in mice. Food Waterborne Parasitology 26, e00144. https://doi.org/10.1016/j.fawpar.2022.e00144.CrossRefGoogle ScholarPubMed
Fahmy, A, Zalat, R and Rabei, A (2021) In vitro evaluation of the antiparasitic activity of Syzygium aromaticum against adult and larval stages of Trichinella spiralis. Scientia Parasitologica 21(3), 94101.Google Scholar
Failoc-Rojas, VE, Silva-Díaz, H, Maguiña, JL, Rodriguez-Morales, AJ, Díaz-Velez, C, Apolaya-Segura, M and Valladares-Garrido, MJ (2023) Evidence-based indications for ivermectin in parasitic diseases: An integrated approach to context and challenges in Peru. Parasite Epidemiology and Control 23, e00320. https://doi.org/10.1016/j.parepi.2023.e00320.CrossRefGoogle ScholarPubMed
Farid, AS, Fath, EM, Mido, S, Nonaka, N and Horii, Y (2019) Hepatoprotective immune response during Trichinella spiralis infection in mice. Journal of Veterinary Medical Science 81(2), 169176. https://doi.org/10.1292/jvms.18-0540.CrossRefGoogle ScholarPubMed
Fawcett, JK and Scott, JE (1960) A rapid and precise method for the determination of urea. Journal of Clinical Pathology 13(2), 156159. https://doi.org/10.1136/jcp.13.2.156.CrossRefGoogle ScholarPubMed
Fox, LM (2006) Ivermectin: Uses and impact 20 years on. Current Opinion in Infectious Diseases 19(6), 588593. https://doi.org/10.1097/QCO.0b013e328010774c.CrossRefGoogle Scholar
Gajadhar, AA, Noeckler, K, Boireau, P, Rossi, P, Scandrett, B and Gamble, HR (2019) International Commission on Trichinellosis: Recommendations for quality assurance in digestion testing programs for Trichinella. Food and Waterborne Parasitology 16, e00059. https://doi.org/10.1016/j.fawpar.2019.e00059.CrossRefGoogle ScholarPubMed
Ghasemiyeh, P and Mohammadi-Samani, S (2018) Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences 13(4), 288303. https://doi.org/10.4103/1735-5362.235156.Google ScholarPubMed
González Canga, A, Sahagún Prieto, AM, José Diez Liébana, M, Martínez, NF, Vega, MS and Vieitez, JJ (2009) The pharmacokinetics and metabolism of ivermectin in domestic animal species. Veterinary Journal 179(1), 2537. https://doi.org/10.1016/j.tvjl.2007.07.011.CrossRefGoogle ScholarPubMed
Gornall, AG, Bardawill, CJ and David, MM (1949) Determination of serum proteins by means of the biuret reaction. The Journal of Biological Chemistry 177(2), 751766.CrossRefGoogle ScholarPubMed
Gottstein, B, Pozio, E and Nöckler, K (2009) Epidemiology, diagnosis, treatment, and control of trichinellosis. Clinical Microbiology Reviews 22(1), 127145. https://doi.org/10.1128/cmr.00026-08.CrossRefGoogle ScholarPubMed
Gou, HF, Chen, XC, Zhu, J, Jiang, M, Yang, Y, Cao, D and Hou, M (2011) Expressions of COX-2 and VEGF-C in gastric cancer: Correlations with lymphangiogenesis and prognostic implications. Journal of Experimental & Clinical Cancer Research 30(1), 14. https://doi.org/10.1186/1756-9966-30-14.CrossRefGoogle ScholarPubMed
Hassan, M, El-Rahman, E, El-Hamed, E, Fattah, A, Harb, O, Mohamed, S and Sarhan, M (2019) The impact of nitazoxanide loaded on solid lipid nanoparticles on experimental trichinellosis. Zagazig University Medical Journal 27(6), 10741084. https://doi.org/10.21608/zumj.2019.16531.1480.Google Scholar
Hassan, ZR, El-Sayed, S, Zekry, KM, Ahmed, SG, Abd-Elhamid, AH, Salama, DE, Taha, AK, Mahmoud, NA, Mohammed, SF, Amin, MM et al. (2024) Impact of atorvastatin and mesenchymal stem cells combined with ivermectin on murine trichinellosis. Parasitology Research 123(1), 57. http://.org/10.1007/s00436-023-08077-x.CrossRefGoogle Scholar
Hu, CX, Zeng, J, Yang, DQ, Yue, X, Dan Liu, R, Long, SR, Zhang, X, Jiang, P, Cui, J and Wang, ZQ (2020) Binding of elastase-1 and enterocytes facilitates Trichinella spiralis larval intrusion of the host’s intestinal epithelium. Acta Tropica 211, 105592. https://doi.org/10.1016/j.actatropica.2020.105592.CrossRefGoogle ScholarPubMed
Hu, X, Shi, Y, Zhang, P, Miao, M, Zhang, T and Jiang, B (2016) d-Mannose: Properties, production, and applications: An overview. Comprehensive Reviews in Food Science and Food Safety 15(4), 773785. https://doi.org/10.1111/1541-4337.12211.CrossRefGoogle Scholar
Kakkar, V, Singh, S, Singla, D and Kaur, IP (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular Nutrition & Food Research 55(3), 495503. https://doi.org/10.1002/mnfr.201000310.CrossRefGoogle ScholarPubMed
Kaneko, J, Harvey, J and Bruss, M (1997) Clinical Biochemistry of Domestic Animals, 5th edn. Academic Press, San Diego, California, USA, 857879. https://doi.org/10.1016/B978-012396305-5/50032-4.Google Scholar
Karmanska, K, Houszka, M and Piekarska, J (2000) The phenomenon of apoptosis in the course of experimental trichinellosis in mice. Wiadomosci parazytologiczne 46(1), 111115.Google ScholarPubMed
Kiernan, JA (2015) Histological and Histochemical Methods: Theory and Practice, 5th edn. Banbury, UK: Scion Publishing.Google Scholar
Klaine, SJ, Alvarez, PJ, Batley, GE, Fernandes, TF, Handy, RD, Lyon, DY, Mahendra, S, McLaughlin, MJ and Lead, JR (2008) Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27(9), 18251851. https://doi.org/10.1897/08-090.1.CrossRefGoogle ScholarPubMed
Kunnumakkara, AB, Sailo, BL, Banik, K, Harsha, C, Prasad, S, Gupta, SC, Bharti, AC and Aggarwal, BB (2018) Chronic diseases, inflammation, and spices: how are they linked? Journal of Translational Medicine 16(1), 14. https://doi.org/10.1186/s12967-018-1381-2.CrossRefGoogle ScholarPubMed
Lawrence, CE, Paterson, JC, Wei, XQ, Liew, FY, Garside, P and Kennedy, MW (2000) Nitric oxide mediates intestinal pathology but not immune expulsion during Trichinella spiralis infection in mice. The Journal of Immunology 164(8), 42294234. https://doi.org/10.4049/jimmunol.164.8.4229.CrossRefGoogle Scholar
Li, CK, Seth, R, Gray, T, Bayston, R, Mahida, YR and Wakelin, D (1998) Production of proinflammatory cytokines and inflammatory mediators in human intestinal epithelial cells after invasion by Trichinella spiralis. Infection and Immunity 66(5), 22002206. https://doi.org/10.1128/IAI.66.5.2200-2206.1998.CrossRefGoogle Scholar
Liu, B, Qu, L and Yan, S (2015) Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell International 15, 16. https://doi.org/10.1186/s12935-015-0260-7.CrossRefGoogle ScholarPubMed
Lundy, SK, Lerman, SP and Boros, DL (2001) Soluble egg antigen-stimulated T helper lymphocyte apoptosis and evidence for cell death mediated by FasL(+) T and B cells during murine Schistosoma mansoni infection. Infection and Immunity 69(1), 271280. https://doi.org/10.1128/iai.69.1.271-280.2001.CrossRefGoogle Scholar
Marillier, RG, Michels, C, Smith, EM, Fick, LCE, Leeto, M, Dewals, B, Horsnell, WGC and Brombacher, F (2008) IL-4/IL-13 independent goblet cell hyperplasia in experimental helminth infections. BMC Immunology 9, 19. https://doi.org/10.1186/1471-2172-9-11.CrossRefGoogle ScholarPubMed
Matsumoto, MA, Ferino, RV, Monteleone, GF and Ribeiro, DA (2009) Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers in Medical Science 24(2), 195201. https://doi.org/10.1007/s10103-008-0544-4.CrossRefGoogle ScholarPubMed
Mehnert, W and Mäder, K (2001) Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews 47(2), 165196. https://doi.org/10.1016/S0169-409X(01)00105-3.CrossRefGoogle ScholarPubMed
Mishra, V, Bansal, KK, Verma, A, Yadav, N, Thakur, S, Sudhakar, K and Rosenholm, JM (2018) Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 10(4), 191. https://doi.org/10.3390/pharmaceutics10040191.CrossRefGoogle ScholarPubMed
Moawad, HS, Elgendy, AM, Mohamed, SM, Mousa, ES, Moustafa, RA and Saleh, AAE (2024) Molecular and serological assessment of the therapeutic efficacy of ivermectin loaded nanoparticles on Trichinella spiralis experimentally. Journal of Parasitic Diseases 112. https://doi.org/10.1007/s12639-024-01756-1CrossRefGoogle Scholar
Mukherjee, S, Ray, S and Thakur, RS (2009) Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences 71(4), 349358. https://doi.org/10.4103/0250-474x.57282.CrossRefGoogle ScholarPubMed
Munn, LL (2017) Cancer and inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 9(2), e1370. https://doi.org/10.1002/wsbm.1370.Google ScholarPubMed
Nada, S, Mohammad, S, Moad, H, Shafey, M, Al-Ghandour, A, Nagwa, A and Moawad, H (2018) Therapeutic effect of Nigella sativa and ivermectin versus albendazole on experimental trichinellosis in mice. Journal of Egyptian Society of Parasitology 48(1), 8592. https://doi.org/10.21608/jesp.2018.77029.CrossRefGoogle Scholar
Nassef, NE, Moharm, IM, Atia, AF, Brakat, RM, Abou Hussien, NM and Mohamed, AS (2018) Therapeutic efficacy of chitosan nanoparticles and albendazole in intestinal murine trichinellosis. Journal of Egyptian Society of Parasitology 48(3), 493502. https://doi.org/10.21608/jesp.2018.76543.CrossRefGoogle Scholar
Norouzi, R (2017) A review on most nanoparticles applied against parasitic infections. Journal of Biology and Today’s World 6(10), 196203. https://doi.org/10.15412/J.JBTW.01061003.Google Scholar
Osborne, BA (1996) Apoptosis and the maintenance of homoeostasis in the immune system. Current Opinion in Immunology 8(2), 245254. https://doi.org/10.1016/s0952-7915(96)80063-x.CrossRefGoogle ScholarPubMed
Pardeike, J, Hommoss, A and Müller, RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics 366(1), 170184. https://doi.org/10.1016/j.ijpharm.2008.10.003.CrossRefGoogle ScholarPubMed
Piekarska, J, Miśta, D, Houszka, M, Króliczewska, B, Zawadzki, W and Gorczykowski, M (2011) Trichinella spiralis: The influence of short chain fatty acids on the proliferation of lymphocytes, the goblet cell count and apoptosis in the mouse intestine. Experimental Parasitology 128(4), 419426. https://doi.org/10.1016/j.exppara.2011.05.019.CrossRefGoogle ScholarPubMed
Potter, B (2007) Liver-plasma protein synthesis. In Enna, SJ and Bylund, DB (eds), xPharm: The Comprehensive Pharmacology Reference. New York: Elsevier, 12. https://doi.org/10.1016/B978-0-12-801238-3.05122-9.Google Scholar
Pozio, E (2007) World distribution of Trichinella spp. infections in animals and humans. Veterinary Parasitology 149(1–2), 321. https://doi.org/10.1016/j.vetpar.2007.07.002.CrossRefGoogle Scholar
Price, CP and Finney, H (2000) Developments in the assessment of glomerular filtration rate. Clinica Chimica Acta 297(1–2), 5566. https://doi.org/10.1016/s0009-8981(00)00233-3.CrossRefGoogle ScholarPubMed
Ren, HJ, Liu, RD, Wang, ZQ and Cui, J (2013) Construction and use of a Trichinella spiralis phage display library to identify the interactions between parasite and host enterocytes. Parasitology Research 112(5), 18571863. https://doi.org/10.1007/s00436-013-3339-x.CrossRefGoogle ScholarPubMed
Serna, H, Porras, M and Vergara, P (2006) Mast cell stabilizer ketotifen prevents mucosal mast cell hyperplasia and intestinal dysmotility in experimental T. spiralis inflammation in the rat. Journal of Pharmacology and Experimental Therapeutics. 319(3), 11041111. https://doi.org/10.1124/jpet.106.104620.CrossRefGoogle ScholarPubMed
Shalaby, MA, Moghazy, FM, Shalaby, HA and Nasr, SM (2010) Effect of methanolic extract of Balanites aegyptiaca fruits on enteral and parenteral stages of Trichinella spiralis in rats. Parasitology Research 107(1), 1725. https://doi.org/10.1007/s00436-010-1827-9.CrossRefGoogle ScholarPubMed
Sheinenzon, A, Shehadeh, M, Michelis, R, Shaoul, E and Ronen, O (2021) Serum albumin levels and inflammation. International Journal of Biological Macromolecules 184, 857862. https://doi.org/10.1016/j.ijbiomac.2021.06.140.CrossRefGoogle ScholarPubMed
Shoheib, Z, Abdin, A, Shamloula, M and El–Segaey, O (2006) Role of α-chymotrypsin and colchicine as adjuvant therapy in experimental muscular trichinellosis: parasitological, biochemical & immunohistochemical study. Egyptian Journal of Bacteriology 15(4), 773790.Google Scholar
Soliman, GA, Taher, ES and Mahmoud, MA (2011) Therapeutic efficacy of dormectin, ivermectin and levamisole against different stages of Trichinella spiralis in rats. Turkiye parazitolojii dergisi 35(2), 8691. https://doi.org/10.5152/tpd.2011.22.CrossRefGoogle ScholarPubMed
Souto, EB and Müller, R (2007) Lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers) for cosmetic, dermal, and transdermal applications. In Nanoparticulate Drug Delivery Systems. CRC Press, Boca Raton, Florida, 213233.Google Scholar
Swilam, S, Nasreldin, N, Abd-Elrahman, S and nasr, S (2022) Evaluation of clinicopathological alterations in mice experimentally infected with Trichenella spiralis and the nematocidal effect of tannic acid and albendazole. New Valley Veterinary Journal 2(1), 1627. https://doi.org/10.21608/nvvj.2022.141188.1005.CrossRefGoogle Scholar
Tato, P, Fernández, AM, Solano, S, Borgonio, V, Garrido, E, Sepúlveda, J and Molinari, JL (2004) A cysteine protease from Taenia solium metacestodes induce apoptosis in human CD4+ T-cells. Parasitology Research 92(3), 197204. https://doi.org/10.1007/s00436-003-1008-1.CrossRefGoogle ScholarPubMed
Toora, B and Rajagopal, G (2002) Measurement of creatinine by Jaffe’s reaction - Determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian Journal of Experimental Biology 40(3), 352354.Google ScholarPubMed
Venkateswarlu, V and Manjunath, K (2004). Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release 95(3), 627638. https://doi.org/10.1016/j.jconrel.2004.01.005.CrossRefGoogle ScholarPubMed
Wang, Y, Gao, S, Hong, L, Hou, T, Liu, H, Li, M, Yang, S and Zhang, Y (2023) Prognostic impact of blood urea nitrogen to albumin ratio on patients with sepsis: a retrospective cohort study. Scientific Reports 13(1), 10013. https://doi.org/10.1038/s41598-023-37127-8.CrossRefGoogle ScholarPubMed
Wang, ZQ, Liu, RD, Sun, GG, Song, YY, Jiang, P, Zhang, X and Cui, J (2017) Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by sera of patients with early trichinellosis. Frontiers in Microbiology 8, 986. https://doi.org/10.3389/fmicb.2017.00986.CrossRefGoogle ScholarPubMed
WHO (2021) Foodborne parasitic infections: Trichinellosis (trichinosis). Available at https://www.who.int/publications/i/item/WHO-UCN-NTD-VVE-2021.7 (accessed on 13 January 2025).Google Scholar
Wissing, SA, Kayser, O and Müller, RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews 56(9), 12571272. https://doi.org/10.1016/j.addr.2003.12.002.CrossRefGoogle ScholarPubMed
Xu, F, Hou, B, Zhu, X, Liu, Y, Shi, X, Li, S, Li, Z, Cai, W, Zhou, Y and Qiu, L (2019) Vaccaria n-butanol extract lower the production of proinflammatory cytokines and the infection risk of T. spiralis In Vivo. Acta Parasitologica 64(3), 520527. https://doi.org/10.2478/s11686-019-00064-6.CrossRefGoogle ScholarPubMed
Yu, YR, Deng, MJ, Lu, WW, Zhang, JS, Jia, MZ, Huang, J and Qi, YF (2014) Endoplasmic reticulum stress-mediated apoptosis is activated in intestines of mice with Trichinella spiralis infection. Experimental Parasitology 145, 16. https://doi.org/10.1016/j.exppara.2014.06.017.CrossRefGoogle ScholarPubMed
Yu, Y and Qi, Y (2015) Progress in treatment and prevention of Trichinellosis. Journal of Infectious Diseases & Therapy 3(6), 2332–0877. https://doi.org/10.4172/2332-0877.1000251.Google Scholar
Zhang, X, Song, Y, Xiong, H, Ci, X, Li, H, Yu, L, Zhang, L and Deng, X (2009) Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. International Immunopharmacology 9(3), 354359. https://doi.org/10.1016/j.intimp.2008.12.016.CrossRefGoogle ScholarPubMed
Zhang, XZ, Yuan Sun, X, Bai, Y, Wen Yue, W, Yue, X, Song, YY, Cui, J and Wang, ZQ (2020) Immune responses in mice vaccinated with a DNA vaccine expressing a new elastase from Trichinella spiralis. Folia Parasitologica 67, 027. https://doi.org/10.14411/fp.2020.027.CrossRefGoogle ScholarPubMed