Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T20:47:08.415Z Has data issue: false hasContentIssue false

Identification of an avian schistosome recovered from Aythya novaeseelandia and infectivity of its miracidia to Lymnaea tomentosa snails

Published online by Cambridge University Press:  12 April 2024

N.E. Davis*
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
*
*Fax: +64 3 689 7867 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A partial life cycle involving miracidia hatched from the eggs of Trichobilharzia sp. recovered from New Zealand scaup (Aythya novaeseelandia) to the release of furcocercariae by laboratory snails (Lymnaea tomentosa) was accomplished. Challenges with five and ten miracidia per snail were lethal. Challenge with three miracidia resulted in development to the daughter sporocyst stage and death in five, development to furcocercarial stage and death in one, and shedding of furcocercariae in one of seven snails. Observed lethality of schistosome miracidia to L. tomentosa may explain the low infection prevalence observed in the wild. Future work should plan challenge exposures of three or fewer miracidia to ensure snail survival and successful recovery of furcocercariae. The Trichobilharzia sp. found in the New Zealand scaup does not key morphologically to the literature. It may be a new species and further work is needed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Anderson, R.M., Mercer, J.G., Wilson, R.A. & Carter, N.P. (1982) Transmission of Schistosoma mansoni from man to snail: experimental studies of miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Parasitology 85, 339360.CrossRefGoogle Scholar
Appleton, C.C. (1986) Occurrence of avian Schistosomatidae (Trematoda) in South African birds as determined by faecal survey. South African Journal of Zoology 21, 6067.CrossRefGoogle Scholar
Basch, P.F. (1966) The life cycle of Trichobilharzia brevis n. sp., an avian schistosome from Malaya. Zeitschrift für Parasitenkunde 27, 242251.CrossRefGoogle Scholar
Bayer, F.A.H. (1954) Larval trematodes in some freshwater snails: a suggested biological method of bilharzia control. Transactions of the Royal Society of Tropical Medicine and Hygiene 48, 414418.CrossRefGoogle ScholarPubMed
Blair, D. & Islam, K.S. (1983) The life cycle and morphology of Trichobilharzia australis n. sp. (Digenea: Schistosomatidae) from the nasal blood vessels of the black duck (Anas superciliosa) in Australia, with a review of the genus Trichobilharzia . Systematic Parasitology 5, 89117.CrossRefGoogle Scholar
Blair, D. & Ottesen, P. (1979) Nasal schistosomiasis in Australian anatids. Journal of Parasitology 65, 982984.CrossRefGoogle Scholar
Bourns, T.K.R., Ellis, J.C. & Rau, M.E. (1973) Migration and development of Trichobilharzia ocellata (Trematoda: Schistosomatidae) in its duck hosts. Canadian Journal of Zoology 51, 10211030.CrossRefGoogle ScholarPubMed
Brackett, S. (1941) Five new species of avian schistosomes from Wisconsin and Michigan with the life cycle of Gigantobilharzia gyrauli (Brackett, 1940). Journal of Parasitology 27, 2539.Google Scholar
Climo, F.M. & Pullen, N.B. (1972) A taxonomic review of the family Lymnaeidae (Mollusca: Gastropoda) in New Zealand. Journal of the Royal Society of New Zealand 2, 513.CrossRefGoogle Scholar
Cort, W.W. (1928) Schistosome dermatitis in the United States (Michigan). Journal of the American Medical Association 90, 10271029.CrossRefGoogle Scholar
Davis, N.E. (1998) Population dynamics and larval trematode interactions with Lymnaea tomentosa and the potential for biological control of schistosome dermatitis in Bremner Bay. Lake Wanaka, New Zealand. Journal of Helminthology 72, 319324.CrossRefGoogle ScholarPubMed
Davis, N.E. (2000) Cercarial dermatitis and the possibility of biological control in Lake Wanaka, New Zealand. Thesis submitted for the degree of Doctor of Philosophy at the University of Otago Dunedin, New Zealand. Unpublished.Google Scholar
de Gentile, L., Picot, H., Bourdeau, P., Bardet, R., Kerjan, A., Piriou, M., Le Guennic, A., Bayssade-Dufour, C., Chabasse, D. & Mott, K.E. (1996) La dermatite cercarienne en Europe: un probleme de sante publique nouveau? Bulletin de l'Organisation de la Sante 74, 159163.Google Scholar
Dell, R.K. (1956) The fresh-water Mollusca of New Zealand. Parts II and III. Part II.- The species previously assigned to the genera Lymnaea and Myxas . Transactions of the Royal Society of New Zealand 84, 7190.Google Scholar
DuBois, G. (1929) Les cercaires de la région de Neuchatel. Bulletin de la Societé Neuchateloise des Sciences Naturelles 53, 3177.Google Scholar
Eklu-Natey, D.T., Al-Khudri, M., Gauthey, D., Dubois, J.P., Wuest, J., Vaucher, C. & Huggel, H. (1985) Epidemiology of swimmers' itch and morphology of Trichobilharzia ocellata in the lake of Geneva Switzerland. Revue Suisse de Zoologie 92, 939954.CrossRefGoogle Scholar
Fain, A. (1955) Recherches Sur les Schistosomes d'oiseaux au Ruanda-Urundi (Congo belge). De'couverte d'une nouvelle bilharziose aviaire: la trichobilharziose nasale, et description de schistosomes nouveaux. Note préliminaire. Revue de Zoologie et Botanique Africaine 51, 373387.Google Scholar
Farley, J. (1971) A review of the family Schistosomatidae: excluding the genus Schistosoma from mammals. Journal of Helminthology 4, 289320.CrossRefGoogle Scholar
Featherston, D.W. & McDonald, T.G. (1988) Schistosome dermatitis in Lake Wanaka: survey of the snail population, 19761977. New Zealand Journal of Zoology 15, 439442.CrossRefGoogle Scholar
Feiler, W. & Haas, W. (1988) Trichobilharzia ocellata: chemical stimuli of duck skin for cercarial attachment. Parasitology 96, 507517.CrossRefGoogle ScholarPubMed
Guth, B.D., Blankespoor, H.D., Reimink, R.L. & Johnson, W.C. (1979) Prevalence of dermatitis-producing schistosomes in natural bird populations of lower Michigan. Proceedings of the Helminthological Society of Washington 46, 5863.Google Scholar
Horak, P. & Kolarova, L. (2000) Survival of bird schistosomes in mammalian lungs. International Journal for Parasitology 30, 6568.CrossRefGoogle ScholarPubMed
Islam, K.S. (1986) Development of Trichobilharzia australis Blair & Islam, 1983 in the snail, Lymnaea lessoni Deshayes and in an experimental definitive host, the Muscovy duck. Journal of Helminthology 60, 301306.CrossRefGoogle Scholar
Islam, K.S. & Copeman, D.B. (1986) The morphology and life-cycle of Trichobilharzia parocellata (Johnston & Simpson, 1939) from the visceral blood vessels of Australian anatids. Systematic Parasitology 8, 3950.CrossRefGoogle Scholar
Jarcho, S. & Van Burkalow, A. (1952) A geographical study of ‘swimmers’ itch in the United States and Canada. Geographical Review 42, 212226.CrossRefGoogle Scholar
Kalbe, M., Haberl, B. & Haas, W. (1997) Miracidial host-finding in Fasciola hepatica and Trichobilharzia ocellata is stimulated by species-specific glycoconjugates released from the host snails. Parasitological Research 83, 806812.CrossRefGoogle ScholarPubMed
Loken, B.R., Spencer, C.N. & JrGranath, W.O. (1995) Prevalence and transmission of cercariae causing schistosome dermatitis in Flathead Lake, Montana. Journal of Parasitology 81, 646649.CrossRefGoogle ScholarPubMed
MacFarlane, W.V. (1944) Schistosome dermatitis in the Southern Lakes. An investigation of Swimmer's Itch. New Zealand Medical Journal 43, 136.Google Scholar
MacFarlane, W.V. (1949) Schistosome dermatitis in New Zealand. Part 1. The parasite. American Journal of Hygiene 50, 143151.Google Scholar
McDonald, M.E. (1981) Key to trematodes reported in waterfowl. Resource Publication 142, Washington, DC, United States Department of the Interior, Fish and Wildlife Service.Google Scholar
McMullen, D.B. & Beaver, P.C. (1945) Studies of schistosome dermatitis. IX. The life cycles of three dermatitis-producing schistosomes from birds and a discussion of the sub-family Bilharziellinae (Trematoda: Schistosomatidae). American Journal of Hygiene 42, 128154.Google Scholar
Meuleman, E.A., Huyer, A.R. & Mooij, J.H. (1984) Maintenance of the life cycle of Trichobilharzia ocellata via the duck Anas platyrhynchos and the pond snail Lymnaea stagnalis . Netherlands Journal of Zoology 34, 414417.CrossRefGoogle Scholar
JrMiller, H.M. (1923) Notes on some furcocercarious larval trematodes. Journal of Parasitology 10, 3546.CrossRefGoogle Scholar
Müller, V. & Kimmig, P. (1994) Trichobilharzia franki n. sp. – the cause of swimmer's dermatitis in southwest German dredged lakes. Applied Parasitology 35, 1231.Google Scholar
Mulvihill, C.A. & Burnett, J.W. (1990) Swimmer's Itch: a cercarial dermatitis. Cutis 46, 211213.Google ScholarPubMed
Prah, S.K. & James, C. (1977) The influence of physical factors on the survival and infectivity of miracidia of Schistosoma mansoni and S. haematobium I. Effect of temperature and ultra-violet light. Journal of Helminthology 51, 7385.CrossRefGoogle ScholarPubMed
Rind, S. (1980) The biology of ‘Wanaka Itch’ – a report of work in progress. pp. 4044 in Robertson, B.T. & Blair, I.D. (Eds) The resources of Lake Wanaka. New Zealand, Tussock Grasslands and Mountain Land Institute, Lincoln College.Google Scholar
Rind, S. (1991) Three ocellate schistosome cercariae (Trematoda: Schistosomatidae) in Gyraulus corinna, with reference to Cercaria longicauda MacFarlane, 1944 in Lymnaea tomentosa . New Zealand Journal of Zoology 18, 5362.CrossRefGoogle Scholar
Talbot, S.B. (1936) Studies on schistosome dermatitis. II Morphological and life history studies on three dermatitis-producing schistosome cercariae, C. elvae Miller 1923, C. stagnicolae, n.sp., and C. physelae, n.sp. American Journal of Hygiene 23, 372384.Google Scholar
Vicente, S.F. (1979) Trematodos larvarios y sus moluscos hospedadores en Salamanca. Revista Iberica de Parasitologia 39, 241250.Google Scholar
Waadu, G.D.B. (1991) Diplostomum spathaceum (Rud. 1819): effect of miracidial age and lifespan on miracidial infectivity. Journal of Helminthology 65, 2830.CrossRefGoogle ScholarPubMed