Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:08:06.653Z Has data issue: false hasContentIssue false

The Hydrobia ulvaeMaritrema subdolum association: cercarial emergence controlled by host activity

Published online by Cambridge University Press:  12 April 2024

K.N. Mouritsen*
Affiliation:
Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, 8200 Aarhus N, Denmark
*
*Address for correspondence: Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Fax: +64 3 479 7584 E-mail [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The release of Maritrema subdolum cercariae (Digenea: Microphallidae) from the marine mud snail Hydrobia ulvae is significantly affected by temperature, salinity, light and exudates from the second intermediate amphipod host. Based on (i) previously published data on temperature–salinity dependent H. ulvae activity, (ii) new experimental data on H. ulvae activity in light and darkness as well as in the presence and absence of host exudates, and (iii) the cercarial emergence rate from free moving snails and snails prevented from crawling, the present analysis indicates that emergence of M. subdolum larvae is regulated mainly by host activity as the ultimate factor for release. The adaptive significance of such an emergence strategy is emphasized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2002

References

Anderson, P.A., Nowosielski, J.W. & Croll, N.A. (1976) The emergence of cercariae of Trichobilharzia ocellata and its relationship to the activity of its snail host Lymnaea stagnalis . Canadian Journal of Zoology 54, 14811487.CrossRefGoogle Scholar
Asch, H.L. (1972) Rhythmic emergence of Schistosoma mansoni cercariae from Biomphalaria glabrata: control by illumination. Experimental Parasitology 31, 350355.CrossRefGoogle ScholarPubMed
Bauman, P.M., Bennett, H.J. & Ingalls, J.W. Jr. (1948) The molluscan intermediate host and schistosomiasis japonica. II. Observations on the production and rate of emergence of cercariae of Schistosoma japonicum from the molluscan intermediate host, Oncomelania quadrasi . American Journal of Tropical Medicine 28, 567575.Google Scholar
Combes, C., Fournier, A., Moné, H. & Théron, A. (1994) Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes. Parasitology 109, S3S13.CrossRefGoogle ScholarPubMed
Cort, W.C. (1922) A study of the escape of cercariae from their snail host. Journal of Parasitology 8, 177184.CrossRefGoogle Scholar
Craig, L.H. (1975) Himasthla quissentensis and Lepocreadium setiferoides: emergence patterns from their molluscan host, Nassarius obsoletus . Experimental Parasitology 38, 5663.CrossRefGoogle Scholar
Givannola, A. (1936) Inversion of periodicity of emission of cercariae from their snail host by reversal of light and darkness. Journal of Parasitology 22, 292295.CrossRefGoogle Scholar
Gumbe, A., Otori, J., Ritchie, L.S. & Hunter, G.W. (1957) The effect of light, temperature and pH on the emergence of Schistosoma japonicum cercariae from Oncomelania nosophora . Transactions of the American Microscopical Society 76, 8792.CrossRefGoogle Scholar
Hylleberg, J. (1975) The effect of salinity and temperature on egestion in mud snails (Gastropoda: Hydrobiidae). A study on niche overlap. Oecologia 21, 279289.CrossRefGoogle Scholar
Kendall, S.B. & McCullough, F.S. (1951) The emergence of the cercariae of Fasciola hepatica from the snail Limnaea truncatula. Journal of Helminthology 25, 7792.CrossRefGoogle Scholar
Kuntz, R.E. (1947) Effect of light and temperature on emergence of Schistosoma mansoni cercariae. Transactions of the American Microscopical Society 66, 3749.CrossRefGoogle ScholarPubMed
Lewis, M.C., Welsford, I.G. & Uglem, G.L. (1989) Cercarial emergence of Proterometra macrostoma and P. edneyi (Digenea: Azygiidae): contrasting responses to light:dark cycling. Parasitology 99, 215223.CrossRefGoogle Scholar
Lo, C.-T. & Lee, K.-M. (1996) Pattern of emergence and the effects of temperature and light on the emergence and survival of heterophyid cercariae (Centrocestus formosanus and Haplorchis pumilio). Journal of Parasitology 82, 347350.CrossRefGoogle ScholarPubMed
McCarthy, A.M. (1999) Photoperiodic cercarial emergence patterns of the digeneans Echinoparyphium recurvatum and Plagiorchis sp. from a mixed infection in Lymnaea peregra . Journal of Helminthology 73, 5962.CrossRefGoogle Scholar
Mitchell, J.B., Lees, E. & Mason, A.R. (1983) Factors affecting the emergence of Gorgoderina vitelliloba cercariae in vivo and in vitro . Journal of Parasitology 69, 615617.CrossRefGoogle Scholar
Mouritsen, K.N. (2002) The Hydrobia ulvae–Maritrema subdolum association: influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity. Journal of Helminthology 76, 341347.CrossRefGoogle ScholarPubMed
Mouritsen, K.N. & Jensen, K.T. (1997) Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator . Marine Ecology Progress Series 151, 123134.CrossRefGoogle Scholar
Pitchford, R.J., Meyling, A.H., Meyling, J. & Du Toit, J.F. (1969) Cercarial shedding patterns of various schistosome species under outdoor conditions in the Transvaal. Annals of Tropical Medicine and Parasitology 63, 359371.CrossRefGoogle ScholarPubMed
Rees, G. (1948) A study of the effect of light, temperature and salinity on the emergence of Cercaria purpurae Lebour from Nucella lapillus (L.). Parasitology 38, 228242.CrossRefGoogle ScholarPubMed
Rojo-Vázquez, F.A. & Simón-Martín, F. (1985) Algunos aspectos de la biologia de las cercarias de Trichobilharzia sp. del Rio Cañedo (provincia de Salamanca, España). Revista Ibérica de Parasitologia 45, 141148.Google Scholar
Shostak, A.W. & Esch, G.W. (1990) Photocycle-dependent emergence by cercariae of Halipegus occidualis from Helisoma anceps, with special reference to cercarial emergence patterns as adaptations for transmission. Journal of Parasitology 76, 190195.CrossRefGoogle Scholar
Sindermann, C.J. (1960) Ecological studies of marine dermatitis-producing schistosome larvae in northern New England. Ecology 41, 678684.CrossRefGoogle Scholar
Sindermann, C.J. & Farrin, A.E. (1962) Ecological studies of Cryptocotyle lingua (Trematoda: Heterophyidae) whose larvae cause ‘pigment spots’ of marine fish. Ecology 43, 6975.CrossRefGoogle Scholar
Smyth, J.D. & Halton, D.W. (1983) The physiology of trematodes. Cambridge, Cambridge University Press.Google Scholar
Théron, A. (1984) Early and late shedding pattern of Schistosoma mansoni cercariae: ecological significance in transmission to human and murine hosts. Journal of Parasitology 70, 652655.CrossRefGoogle ScholarPubMed
Théron, A. (1989) Hybrids between Schistosoma mansoni and S. rodhaini: characterization by cercarial emergence rhythms. Parasitology 99, 225228.CrossRefGoogle ScholarPubMed
Théron, A. & Combes, C. (1988) Genetic analysis of cercarial emergence rhythms of Schistosoma mansoni . Behavior Genetics 18, 201209.CrossRefGoogle ScholarPubMed
Toledo, R., Muños-Antoli, C. & Esteban, J.G. (1999) Production and chronobiology of emergence of the cercariae of Euparyphium albuferensis (Trematoda: Echinostomatidae). Journal of Parasitology 85, 263267.CrossRefGoogle ScholarPubMed
Umadevi, K. & Madhavi, R. (1997) Effects of light and temperature on the emergence of Haplorchis pumilio cercariae from the snail host Thiara tuberculata . Acta Parasitologica 42, 1216.Google Scholar
Varma, A.K. (1961) Observations on the biology and pathogenicity of Cotylophoron cotylophoron (Fischoeder, 1901). Journal of Helminthology 35, 161168.CrossRefGoogle ScholarPubMed
Wagenbach, G.E. & Alldredge, A.L. (1974) Effect of light on the emergence pattern of Plagiorchis micracanthos cercariae from Stagnicola exilis . Journal of Parasitology 60, 782785.CrossRefGoogle ScholarPubMed
West, A.F. (1961) Studies on the biology of Philophthalmus gralli Mathis and Leger, 1910 (Trematoda: Digenea). American Midland Naturalist 66, 363383.CrossRefGoogle Scholar
Williams, C.L. & Gilbertson, D.E. (1983) Effects of alternations in the heartbeat rate and locomotor activity of Schistosoma mansoni-infected Biomphalaria glabrata on cercarial emergence. Journal of Parasitology 69, 677681.CrossRefGoogle Scholar