Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T05:22:25.512Z Has data issue: false hasContentIssue false

Helminth endoparasites of the smooth newt Lissotriton vulgaris: linking morphological identification and molecular data

Published online by Cambridge University Press:  05 March 2018

U. Sinsch*
Affiliation:
University of Koblenz-Landau, Department of Biology, Universitätsstrasse 1, D-56070 Koblenz, Germany
P. Heneberg
Affiliation:
Charles University, Third Faculty of Medicine, Ruská 87, CZ-100 00 Prague 10, Czech Republic
M. Těšínský
Affiliation:
Charles University, Third Faculty of Medicine, Ruská 87, CZ-100 00 Prague 10, Czech Republic
C. Balczun
Affiliation:
Laboratory of Medical Parasitology; Central Military Hospital Koblenz; Department XXI (Med. Microbiology); Andernacher Street 100; 56070 Koblenz, Germany
P. Scheid
Affiliation:
University of Koblenz-Landau, Department of Biology, Universitätsstrasse 1, D-56070 Koblenz, Germany Laboratory of Medical Parasitology; Central Military Hospital Koblenz; Department XXI (Med. Microbiology); Andernacher Street 100; 56070 Koblenz, Germany
*
Author for correspondence: U. Sinsch, E-mail: [email protected]

Abstract

The helminth endoparasites of many European amphibian species are often known exclusively from morphological descriptions. A molecular library of DNA sequence data linked to morphological identifications is still in its infancy. In this paper, we aim to contribute to such a library on the smooth newt Lissotriton vulgaris, the intermediate and definitive host of 31 helminth parasites, according to evidence published so far. Newts (n = 69) were collected at two study sites in western Germany and examined for the presence of helminths. A total of five helminth species were detected in 56 (81%) of the newts, but only one or two species infected a single host. Four out of five helminth species were identified morphologically and based on DNA sequences as Parastrigea robusta (metacercariae), Oswaldocruzia filiformis, Megalobatrachonema terdentatum (adults and larvae) and Cosmocerca longicauda, and the corresponding sequences were provided subsequently. Oswaldocruzia molgeta was confirmed to be a junior synonym of O. filiformis. Molecular data on a fifth species (a cosmocercid nematode) that could not be identified at species level were added to GenBank. These findings increased the molecular library on morphologically identified smooth newt parasites significantly, from 12 to 15 entries.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, SF, Gish, W, Miller, W, Myers, EW and Lipman, DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.Google Scholar
Anderson, RC, Chabaud, AG and Willmott, S (Eds) (2009) Keys to the nematode parasites of vertebrates: archival volume. Wallingford, CABI Publishing.Google Scholar
Andreas, K (2007) Helminthen einheimischer Froschlurche. PhD thesis, Veterinärmedizin der Freien Universität Berlin, Germany.Google Scholar
Avery, RA (1971) Helminth parasite populations in newts and their tadpoles. Freshwater Biology 1, 113119.Google Scholar
Barus, V and Groschaft, J (1962) Helmintofauna čolků Triturus alpestris (Laurenti, 1768) a Triturus vulgaris L. ze šumavské oblasti. Zoologické listy 11, 253264.Google Scholar
Ben Slimane, B, Durette-Desset, M-Cl and Chabaud, AG (1993) Oswaldocruzia (Trichostrongyloidea) parasites d'amphibiens des collections du Muséum de Paris. Annales de Parasitologie Humaine et Comparee 68, 88100.Google Scholar
Bertman, M and Okulewicz, A (1987) Capillaria tritonispunctati (Diesing, 1851) Travassos, 1915 and Megalobatrachonema terdentatum (Linstow, 1890) Hartwich, 1960 (Nematoda) in newts (Triturus vulgaris L. and Triturus cristatus (Laur.)). Wiadomości parazytologiczne 33, 18.Google Scholar
Besansky, NJ, Severson, DW and Ferdig, MT (2003) DNA barcoding of parasites and invertebrate disease vectors: what you don't know can hurt you. Trends in Parasitology 19, 545546.Google Scholar
Bowles, J, Blair, D and McManus, DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.Google Scholar
Bredtmann, CM, Krücken, J, Murugaiyan, J, Kuzmina, T and von Samson-Himmelstjerna, G (2017) Nematode species identification – current status, challenges and future perspectives for cyathostomins. Frontiers in Cellular and Infection Microbiology 7, 18.Google Scholar
Bykhovskaya-Pavlovskaya, IE (1962) Trematoda of birds of the fauna of the USSR. Leningrad, SSSR, Akademia Nauk (in Russian).Google Scholar
Caffara, M, Bruni, G, Paoletti, C, Gustinelli, A and Fioravanti, ML (2014) Metacercariae of Clinostomum complanatum (Trematoda: Digenea) in European newts Triturus carnifex and Lissotriton vulgaris (Caudata: Salamandridae). Journal of Helminthology 88, 278285.Google Scholar
Chontananarth, T, Tejangkura, T, Wetchasart, N and Chimburut, C (2017) Morphological characteristics and phylogenetic trends of trematode cercariae in freshwater snails from Nakhon Nayok Province, Thailand. Korean Journal of Parasitology 55, 4754.Google Scholar
Chumak, VA (1989) The life cycle of the cestode Batrachotaenia carpathica (Proteocephalidae, Ophiotaeniidae). Parazitologiya 23, 7882.Google Scholar
Dubois, G (1968) Synopsis des Strigeidae et des Diplostomatidae (Trematoda) I. Neuchatel, Switzerland, Société Neuchateloise des Naturelles Université.Google Scholar
Gibbons, LM (2010) Keys to the nematode parasites of vertebrates: supplementary volume. Wallingford, CABI Publishing.Google Scholar
Grabda, B (1959) Astiotrema trituri sp. n. (Trematoda-Plagiorchiidae) from the small intestine of Triturus vulgaris L. Bulletin de l'Academie polonaise des Sciences. Classe II. Serie des Sciences Biologiques 7, 1721.Google Scholar
Grabda-Kazubska, B (1974) On the morphology of Cosmocerca longicauda (Linstow, 1885) (Nematoda, Cosmocercidae) and its occurrence in newts in Poland. Acta Parasitologica Polonica 22, 97111.Google Scholar
Hartwich, G (1960) Über Megalobatrachonema terdentatum (Linstow 1890) nov. comb. und die Stellung von Megalobatrachonema Yamaguti 1941 im System der Ascaridina (Nematoda). Zeitschrift für Parasitenkunde 19, 606616.Google Scholar
Iskova, NI, Sharpilo, VP, Sharpilo, LD and Tkach, VV (1995) Katalog gel' mintov pozvonochnykh Ukrainy: trematody nazemnykh pozvonochnykh. Kiev, Nacionalnaja Akademiyia Nauk Ukrainy.Google Scholar
Jacobs, DE, Zhu, X, Gasser, RB and Chilton, NB (1997) PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat. Acta Tropica 68, 191200.Google Scholar
Lewis, EA (1928) On a new species of the nematode genus Oswaldocruzia from the newt. Journal of Helminthology 6, 113116.Google Scholar
Locke, SA, McLaughlin, JD, Lapierre, AR, Johnson, PTJ and Marcogliese, DJ (2011) Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. Journal of Parasitology 97, 846851.Google Scholar
Locke, SA, Al-Nasiri, FS, Caffara, M, et al. (2015) Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. International Journal for Parasitology 45, 841855.Google Scholar
Luque, JL, Pereira, FB, Alves, PV, Oliva, ME and Timi, JT (2017) Helminth parasites of South American fishes: current status and characterization as a model for studies of biodiversity. Journal of Helminthology 91, 150164.Google Scholar
Macko, JK (1974) Platyhelminthen der Wildente – Anas ptatyrhynchos L. in der Slowakei (CSSR). Helminthologia 15, 905959.Google Scholar
Mira, O, Kuris, AM, Torchin, ME, Hechinger, RF, Dunham, EJ and Chiba, S (2005) Molecular genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). International Journal for Parasitology 35, 793801.Google Scholar
Moravec, F and Skoríková, B (1998) Amphibians and larvae of aquatic insects as new paratenic hosts of Anguillicola crassus (Nematoda: Dracunculoidea), a swimbladder parasite of eels. Diseases of Aquatic Organisms 34, 217222.Google Scholar
Moravec, F and Vojtková, L (1975) Variability in two nematode species, Oswaldocruzia filiformis (Goeze, 1782) and Oxysomatium brevicaudatum (Zeder, 1800), common parasites of European amphibians and reptiles. Scripta Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis 2, 6175.Google Scholar
Niewiadomska, K (1970) An analysis of criteria for generic differentiation within the order Strigeidida (La Rue, 1926). Acta Parasitologica Polonica 18, 277289.Google Scholar
Niewiadomska, K (2002) Family Strigeidae Railliet, 1919. pp. 231241 in Gibson, DI, Jones, A and Bray, RA (Eds) Keys to the trematoda. Vol. 1. London, CABI Publishing and the Natural History Museum.Google Scholar
Odening, K (1965) Der Entwicklungszyklus von Parastrigea robusta Szidat, 1928 (Trematoda, Strigeida) im Raum Berlin. Zeitschrift für Parasitenkunde 26, 185196.Google Scholar
Odening, K (1967) Die Lebenszyklen von Strigea falconis palumbi (Viborg), S. strigis (Schrank) und S. sphaerula (Rudolphi) (Trematoda, Strigeida) im Raum Berlin. Zoologisches Jahrbuch Systematik 94, 167.Google Scholar
Otranto, D, Rehbein, S, Weigl, S, Cantacessi, C, Parisi, A, Lia, RP and Olson, PD (2007) Morphological and molecular differentiation between Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) Tang and Tang, 1978 (Platyhelminthes: Digenea). Acta Tropica 104, 9198.Google Scholar
Patrelle, C, Portier, J, Jouet, D, Delorme, D and Ferté, H (2015) Prevalence and intensity of Alaria alata (Goeze, 1792) in water frogs and brown frogs in natural conditions. Parasitology Research 114, 44054412.Google Scholar
Petter, AJ and Chabaud, AG (1971) Life-cycle of Megalobatrachonema terdentatum (Linstow) in France. Annales de parasitologie humaine et comparee 46, 463477.Google Scholar
Routtu, J, Grunberg, D, Izhar, R, Dagan, Y, Guttel, Y, Ucko, M and Ben-Ami, F (2014) Selective and universal primers for trematode barcoding in freshwater snails. Parasitology Research 113, 25352540.Google Scholar
Sato, H, Ihara, S, Inaba, O and Une, Y (2010) Identification of Euryhelmis costaricensis metacercariae in the skin of Tohoku hynobiid salamanders (Hynobius lichenatus), Northeastern Honshu, Japan. Journal of Wildlife Diseases 46, 832842.Google Scholar
Sattmann, V (1990) Endohelminths of some amphibians from Northern Greece (Trematoda, Acanthocephala, Nematoda; Amphibia: Triturus, Rana, Bombina). Herpetozoa 3, 6771.Google Scholar
Scholz, T and Moravec, F (1990) A record of gravid cestodes Bothriocephalus claviceps (Goeze, 1782) from the newts Triturus vulgaris (L.) (Amphibia). Folia Parasitologica 37, 283284.Google Scholar
Shimalov, VV (2002) The helminth fauna of amphibians of open canals in meliorated regions of the Belorussian Polesie. Parazitologiia 36, 304309.Google Scholar
Shimalov, VV, Shimalov, VT and Shimalov, AV (2001) Helminth fauna of newts in Belorussian Polesie. Parasitology Research 87, 356.Google Scholar
Sinnappah, ND, Lim, L-HS, Rohde, K, Tinsley, R, Combes, C and Verneau, O (2001) A paedomorphic parasite associated with a neotenic amphibian host: phylogenetic evidence suggests a revised systematic position for Sphyranuridae within anuran and turtle polystomatoineans. Molecular Phylogenetics and Evolution 18, 189201.Google Scholar
Sinsch, U and Breuer, A (2018) Diversität, Verbreitung und Trematodenbefall der Wasserschnecken auf der Schmidtenhöhe (Koblenz). Mainzer Naturwissenschaftliches Archiv (in press).Google Scholar
Sitko, J (1969) Findings of trematodes (Trematoda) in wild birds of Czechoslowakia. Věstník Československé společnosti zoologické 33, 7987.Google Scholar
Sitko, J, Faltýnková, A and Scholz, T (2006) Checklist of the Trematodes (Digenea) of birds of the Czech and Slovak Republics. Prague, Czech Republic, Academia.Google Scholar
Sitko, J, Bizos, J and Heneberg, P (2017) Central European parasitic flatworms of the Cyclocoelidae Stossich, 1902 (Trematoda: Plagiorchiida): molecular and comparative morphological analysis suggests the reclassification of Cyclocoelum obscurum (Leidy, 1887) into the Harrahium Witenberg, 1926. Parasitology 144, 368383.Google Scholar
Spieler, M (1990) Parasitologische Untersuchungen an einheimischen Froschlurchen. Jahrbuch für Feldherpetologie Beiheft 2, 1170.Google Scholar
Storer, RW (2000) The metazoan parasite fauna of grebes (Aves: Podicipediformes) and its relationship to the birds’ biology. Miscellaneous Publications, Museum of Zoology, University of Michigan 188, 190.Google Scholar
Szidat, L (1929) Beiträge zur Kenntnis der Gattung Strigea (Abildg.) II. Spezieller Teil: Revision der Gattung Strigea nebst Beschreibung einer Anzahl neuer Gattungen und Arten. Zeitschrift für Parasitenkunde 1, 688764.Google Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Taranko-Tulecka, H (1959) Helmintofauna traszki zwyczajnej – Triturus vulgaris L. okolic Lublina. Acta Parasitologica Polonica 7, 423428.Google Scholar
Travassos, L (1937) Sur les especes europeennes du genre Oswaldocruzia. Papers on helminthology published in commemoration of the 30 year jubileum of K.I. Skrjabin and of 15th anniversary of the All-Union Institute of Helminthology 1, 725–733.Google Scholar
Vanhove, MPM, Tessens, B, Schoelinck, C, Jondelius, U, Littlewood, DTJ, Artois, T and Huyse, T (2013) Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes). Zookeys 365, 355379.Google Scholar
Vojtek, J (1972) Observations on the life cycle of Parastrigea robusta Szidat, 1928 (Trematoda: Strigeidae) in Czechoslovakia. Folia Parasitológica 19, 210.Google Scholar
Vojtek, J (1989) The present situation of the research into the stages of development of trematodes in Czechoslovakia. Scripta Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis 19, 339352.Google Scholar
Vojtková, L (1963a) Zur Kenntnis der Helminthenfauna der Schwanzlurchen (Urodela) der Tschechoslovakei. Věstník Československé společnosti zoologické 17, 2030.Google Scholar
Vojtková, L (1963b) Larválni stadia cizopasných červů v obojživelnících CSSR. Československá parasitologie 10, 171185.Google Scholar
Vojtková, L. (1966) Zur Kenntnis des Entwicklungszyklus der Art Holostephanus volgensis (Sudarikov, 1962) n. comb. Vojtková, 1966 (Trematoda, Cyathocotylidae). Věstník Československé společnosti zoologické 30, 275286.Google Scholar
Vojtková, L. & Roca, V. (1994) Parasites of the frogs and toads in Europe. Part II: Trematoda. Revista Espanola de Herpetologia 8, 718.Google Scholar
Vojtková, L. & Roca, V. (1996) Parasites of the frogs and toads in Europe. Part III: Nematoda, Cestoda, Acanthocephala, Hirudinea, Crustacea and Insecta. Revista Espanola de Herpetologia 10, 1327.Google Scholar
Vojtková, L and Vojtek, J (1972) Abhängigkeit der Trematodenfauna der Schwanzlurche (Urodela) von ihrer Lebensumgebung. Scripta Facultatis Scieniarum Naturalium Universitatis Purkynianane Brunensis 2, 2531.Google Scholar
White, TJ, Bruns, T, Lee, S and Taylor, JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315322 in Innis, MA, Gelfand, DH, Sninsky, JJ and White, TJ (Eds) PCR protocols: a guide to methods and applications. New York, Academic Press.Google Scholar
Winnepenninckx, B, Backeljau, T and De Wachter, R (1994) Small ribosomal subunit RNA and the phylogeny of the Mollusca. The Nautilus (Suppl. 2), 98110.Google Scholar
Yildirimhan, HS, Bursey, CR and Goldberg, SR (2005) Helminth parasites of the Caucasian salamander, Mertensiella caucasica, from Turkey. Comparative Parasitology 72, 7587.Google Scholar
Zhigileva, ON and Kirina, IY (2015) Helminth infestation of the moor frog (Rana arvalis Nilsson, 1842) and the Siberian tree frog (Rana amurensis Boulenger, 1886) in Western Siberia. Contemporary Problems of Ecology 8, 232236.Google Scholar