Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T08:02:18.577Z Has data issue: false hasContentIssue false

Granulomatous inflammation during Heligmosomoides polygyrus primary infections in FVB mice

Published online by Cambridge University Press:  12 April 2024

A. Cywińska*
Affiliation:
Division of Pathophysiology, Department of Preclinical Sciences, Warsaw Agricultural University, Ciszewskiego 8, 02-786, Warsaw, Poland
K. Czumińska
Affiliation:
Division of Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Warsaw Agricultural University, Ciszewskiego 8, 02-786, Warsaw, Poland
A. Schollenberger
Affiliation:
Division of Pathophysiology, Department of Preclinical Sciences, Warsaw Agricultural University, Ciszewskiego 8, 02-786, Warsaw, Poland
*
*Fax: +48 22 8530920 Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Host responses to primary infections with Heligmosomoides polygyrus were studied in fast responding FVB mice (H-2q). Pathological changes in the intestinal mucosa, mesenteric lymph nodes and spleen were examined. Features of the fast response were typical: low effectiveness of infection and limiting of parasite survival and egg production, with worm expulsion occurring about 60 days post-infection. The intestinal inflammatory response involved infiltration by different cells into the intestinal mucosa and granulomata formation. As is typical for intestinal nematode infection enteropathy, decreased villus:crypt ratio and hyperplasia of goblet and Paneth cells were also present. Reactions of the intestinal mucosa, mesenteric lymph nodes and spleen increased over time post-infection and after worm expulsion. Enteropathy may help worm expulsion by creating an unfavourable environment for H. polygyrus. The implications of these findings and the potential role of intestinal intraepithelial lymphocytes in the pathogenesis of generated lesions are discussed.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

References

Bansemir, A.D. & Sukhdeo, V.K. (1996) Villus length influences habitat selection by Heligmosomoides polygyrus . Parasitology 113, 311316.CrossRefGoogle ScholarPubMed
Behnke, J.M., Wakelin, D. & Wilson, M.M. (1978) Trichinella spiralis : delayed rejection in mice concurrently infected with Nematospiroides dubius . Experimental Parasitology 46, 121130.CrossRefGoogle ScholarPubMed
Behnke, J.M., Wahid, F.N., Grencis, R.K., Else, K.J., Ben-Smith, A.W. & Goyal, P.K. (1993) Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunology 15, 415421.CrossRefGoogle ScholarPubMed
Boismenu, R. & Havran, W.L. (1994) Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 12531255.CrossRefGoogle Scholar
Boismenu, R., Feng, L., Xia, Y.Y., Chang, J.C.C. & Havran, W.L. (1996) Chemokine expression by intraepithelial γδ T cells. Implications for recruitment of inflammatory cells to damaged epithelia. Journal of Immunology 157, 985992.CrossRefGoogle Scholar
Boźić, F. Marinculić, A., Duraković, E. (2000) Analysis of intestinal intraepithelial lymphocyte populations in experimental Trichinella spiralis infection of mice. Folia Parasitologica 47, 5559.CrossRefGoogle ScholarPubMed
Bryant, V. (1973) The life cycle of Nematospiroides dubius, Baylis, 1926 (Nematoda: Heligmosomidae). Journal of Helminthology 47, 263268.CrossRefGoogle ScholarPubMed
Cywińska, A., Winnicka, A. & Schollenberger, A. (2001) Immunofenotypowanie limfocytów biorących udział w miejscowej odpowiedzi immunogicznej jelit na inwazję Heligmosomoides polygyrus u myszy FVB. Materialy IV Konferencji: Biologia w diagnostyce chorób zakaźnych i biotechnologii Warszawa, 2001, str. 68–71.Google Scholar
Doligalska, M. & Mijal, J. (2000) IgG1 and IgG2a responses specific to Trichinella spiralis during subsequent infection with Heligmosomoides polygyrus in BALB/c mice. Acta Parasitologica 45, 115120.Google Scholar
Else, K.J. & Finkelman, F.D. (1998) Intestinal nematode parasites, cytokines and effector mechanisms. International Journal for Parasitology 28, 11451158.CrossRefGoogle ScholarPubMed
Enriquez, F.J., Zidian, J.L. & Cypess, R.H. (1988) Nematospiroides dubius : genetic control of immunity to infections of mice. Experimental Parasitology 67, 116120.CrossRefGoogle ScholarPubMed
Fakae, B.B., Harrison, L.J.S., Sewell, M.M.H. (2000) The intensity and duration of primary Heligmosomoides polygyrus infection in TO mice modify aquired immunity to secondary challenge. Journal of Helminthology 74, 225231.CrossRefGoogle Scholar
Garside, P., Grencis, R.K. & Mowat, A.M. (1992) T lymphocyte dependent enteropathy in murine Trichinella spiralis infection. Parasite Immunology 14, 217225.CrossRefGoogle ScholarPubMed
Garside, P., Kennedy, M.W., Wakelin, D. & Lawrence, K.E. (2000) Immunopathology of intestinal helminth infection. Parasite Immunology 22, 605612.CrossRefGoogle ScholarPubMed
Housley, R.M., Morris, C.F., Boyle, W., Ring, B., Blitz, R., Terpley, J.E., Aukerman, S.L., Devine, P.L., Whitehead, R.H. & Pierce, G.F. (1994) Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells through rat gastrointestinal tract. Journal of Clinical Investigation 94, 17641777.CrossRefGoogle ScholarPubMed
Jones, C.E. & Rubin, R. (1974) Nematospiroides dubius: mechanisms of host immunity, I. Parasite counts, histopathology, and serum transfer involving orally or subcutaneously sensitized mice. Experimental Parasitology 35, 434452.CrossRefGoogle ScholarPubMed
Kamal, M., Wakelin, D., Quellette, A.J., Smith, A., Podolsky, D.K. & Mahida, R. (2001) Mucosal T cells regulate Paneth and intermediate cell numbers in the small intestine of T. spiralis - infected mice. Clinical and Experimental Immunology 126, 117125.CrossRefGoogle ScholarPubMed
Kamal, M., Dehlawi, M.S., Rosa Brunet, L. & Wakelin, D. (2002) Paneth and intermediate cell hyperplasia induced in mice by helminth infections. Parasitology 125, 275281.CrossRefGoogle ScholarPubMed
Khan, W.I., Blennerhasset, P., Ma, C., Matthaei, K.I. & Collins, S.M. (2001) Stat6 dependent goblet cell hyperplasia during intestinal nematode infection. Parasite Immunology 23, 3942.CrossRefGoogle ScholarPubMed
Lawrence, C.E. & Pritchard, D.I. (1994) Immune response profiles in responsive and nonresponsive mouse stains infected with Heligmosomoides polygyrus . International Journal for Parasitology 24, 487494.CrossRefGoogle Scholar
Lindberg, R., Johansen, M.V., Nilsson, C. & Nansen, P. (1999) An immunohistological study of phenotypic characteristics of cells of the inflammatory response in the intestine of Schistosoma bovis infected goats. Parasitology 118, 9199.CrossRefGoogle ScholarPubMed
Liu, S-K. (1965a) Pathology of Nematospiroides dubius. I. Primary infections in C3H and Webster mice. Experimental Parasitology 17, 123135.CrossRefGoogle ScholarPubMed
Liu, S-K. (1965b) Pathology of Nematospiroides dubius. II. Reinfections in Webster mice. Experimental Parasitology 17, 136147.CrossRefGoogle ScholarPubMed
Miller, H.R.P., Huntley, J.F. & Wallace, G.R. (1981) Immune exclusion and mucus trapping during the rapid expulsion of Nippostrongylus brasiliensis from primed rats. Immunology 44, 419429.Google ScholarPubMed
Monroy, F.G. & Enriquez, F.J. (1992) Heligmosomoides polygyrus: a model for chronic gastrointestinal helminthiasis. Parasitology Today 8, 4954.CrossRefGoogle Scholar
Nawa, Y., Ishikawa, N. & Tsuchiya, K. (1994) Selective effector mechanisms for the expulsion of intestinal helminths. Parasite Immunology 16, 333338.CrossRefGoogle ScholarPubMed
Poupon, V. & Cerf-Bensussan, N. (1999) Adhesion molecules on mucosal lymphocytes. pp. 523540 in Ogra, P.L., Mestecky, J., Amm, M.E.I., Strober, W., Bienenstock, J. & McGhee, J.R. (Eds) Mucosal immunology. 2nd edn. London, Academic Press.Google Scholar
Prowse, S.J., Ey, P.L. & Jenkin, C.R. (1978) Immunity to Nematospiroides dubius : cell and immunoglobulin changes associated with the onset of immunity in mice. Australian Journal of Experimental Biology and Medical Science 56, 237246.CrossRefGoogle ScholarPubMed
Telford, G., Wheeler, D.J., Appleby, P., Bowen, J.G. & Pritchard, D.I. (1998) Heligmosomoides polygyrus immunomodulatory factor (IMF), targets T-lymphocytes. Parasite Immunology 20, 601611.CrossRefGoogle ScholarPubMed
Urban, J.F. Jr., Maliszewski, C.R., Madden, K.B., Katona, I.M. & Finkelman, F.D. (1995) IL-4 treatment can cure established gastrointestinal nematode immunodeficient mice. Journal of Immunology 154, 46754684.CrossRefGoogle ScholarPubMed
Wahid, F.N. & Behnke, J.M. (1992) Stimuli for acquired resistance to Heligmosomoides polygyrus from intestinal tissue resident L3 and L4 larvae. International Journal for Parasitology 22, 699710.CrossRefGoogle ScholarPubMed
Wahid, F.N., Behnke, J.M., Grencis, R.K., Else, K.J., Ben-Smith, A.W. (1994) Immunological relationships during primary infection with Heligmosomoides polygyrus: Th2 cytokines and primary response phenotype. Parasitology 108, 461471.CrossRefGoogle ScholarPubMed
Wakelin, D. (1978) Immunity to intestinal parasites. Nature 273, 617620.CrossRefGoogle ScholarPubMed
Weinstock, J.V. (1999) Mucosal immune response to parasitic infections. pp. 709719 in Ogra, P.L., Mestecky, J., Amm, M.E.I., Strober, W., Bienenstock, J. & McGhee, J.R. (Eds) Mucosal immunology. 2nd edn. London, Academic Press.Google Scholar