Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-18T19:28:55.162Z Has data issue: false hasContentIssue false

Genomic variability within laboratory and wild isolates of the trichostrongyle mouse nematode Heligmosomoides polygyrus

Published online by Cambridge University Press:  12 April 2024

M.A. Abu-Madi*
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 OEX, UK: Department of Applied Sciences, Faculty of Technology, Qatar University, PO Box 2713, Doha, Qatar:
S.N. Mohd-Zain
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 OEX, UK: Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia:
J.W. Lewis
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 OEX, UK:
A.P. Reid
Affiliation:
CABI Biosciences (UK Centre), Egham, Surrey, TW20 9TY, UK
*
*Fax: (0974) 820337 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

PCR-RFLP techniques have been used to characterize wild and laboratory isolates of the trichostrongyle nematode Heligmosomoides polygyrus from the wood mouse Apodemus sylvaticus and the laboratory mouse Mus musculus respectively. Both isolates can be distinguished by eight endonuclease digestions of the ITS region of the rDNA repeat namely, Alu I, Dde I, Hpa II, Hae III, Hinf I, Hha I, Pvu II and Sal I. In two of the digests, Hinf I and Rsa I, a minor polymorphism was observed in the wild isolate of H. polygyrus which has been cultured in laboratory-bred A. sylvaticus for several generations when compared with H. p. polygyrus from wild A. sylvaticus. A minor polymorphism was also identified in further wild isolates of H. polygyrus collected from A. sylvaticus in a field site in Egham, Surrey. However no evidence of polymorphism was observed in the laboratory isolate of H. polygyrus from the CD1 strain of M. musculus and the laboratory-bred A. sylvaticus. Reasons for this are discussed and further studies on the population genetics of H. polygyrus are suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

References

Abu-Madi, M.A. (1994) Epidemiological and molecular studies on Heligmosomoides polygyrus (Nematoda: Trichostrongylidae) in wild and laboratory mice. PhD thesis, University of London.Google Scholar
Abu-Madi, M.A., Pleass, R.J. & Lewis, J.W. (1994) Metabolic labelling of wild and laboratory subspecies of the trichostrongyle nematode Heligmosomoides polygyrus . Veterinary Parasitology 55, 235243.CrossRefGoogle ScholarPubMed
Abu-Madi, M.A., Reid, A.P., Lewis, J.W. & Hominick, W.M. (1994) Genomic variability within laboratory and wild subspecies of Heligmosomoides polygyrus . Journal of Helminthology 68, 9396.CrossRefGoogle ScholarPubMed
Andreson, G.R. & Baker, S.C. (1993) Species differentiation in the Didymozoidae (Digenea): restriction fragment length differences in internal transcribed spacer and 5.8S ribosomal DNA. International Journal for Parasitology 23, 133136.CrossRefGoogle Scholar
Bartlett, A. & Ball, P.A.J. (1972) Nematospiroides dubius in the mouse as a possible model of endemic human hookworm infection. Annals of Tropical Medicine and Parasitology 66, 129134.CrossRefGoogle ScholarPubMed
Behnke, J.M. (1990) Parasites: immunity and pathology. 437 pp. London, New York, Philadelphia, Taylor and Francis.CrossRefGoogle Scholar
Behnke, J.M., Keymer, A.E. & Lewis, J.W. (1991) Heligmosomoides polygyrus or Nematospiroides dubius?. Parasitology Today 7, 177179.CrossRefGoogle ScholarPubMed
Blouin, M.S. (1998) Mitochondrial DNA diversity in nematodes. Journal of Helminthology 72, 285289.CrossRefGoogle ScholarPubMed
Blouin, M.S., Yowell, C.A., Courtney, C.H. & Dame, J.B. (1995) Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014.CrossRefGoogle ScholarPubMed
Bowles, J. & McManus, D.P. (1993) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular and Biochemical Parasitology 57, 231240.CrossRefGoogle ScholarPubMed
Brindley, P.J., Gazzinelli, R.T., Denkers, E.T., Davis, S.W., Dubey, J.P., Belford, J.R.R., Martins, M.C., Siveira, C., Jamra, L., Waters, A.P. & Sher, A. (1993) Differentiation of Toxoplasma gondii from closely related coccidia by riboprint analysis and surface antigen gene polymerase chain reaction. American Journal of Tropical Medicine and Hygiene 48, 447456.CrossRefGoogle ScholarPubMed
Chambers, A.E., Almond, N.M., Simpson, A.J.G. & Parkhouse, R.M.E. (1986) Repetitive DNA as a tool for the identification and comparison of nematode variants: application to Trichinella isolates. Molecular and Biochemical Parasitology 21, 113120.CrossRefGoogle ScholarPubMed
Dick, T.A., Currans, J. & Klassen, G. (1985) Genetics and molecular biology of Trichinella in ICT6. pp. 118128 in Kim, W.K. (Ed.) Trichinellosis. New York, State University of New York Press.Google Scholar
Dick, T.A., Lu, M., Devos, T. & Ma, K. (1992) The use of the polymerase chain reaction to identify porcine isolates of Trichinella . Journal of Parasitology 78, 145148.CrossRefGoogle ScholarPubMed
Dupouy-Camet, J., Soule, C., Guillou, J.P., Rouet, E., Lavareda, S., Ancelle, T. & Ben-Arous, R. (1991) Detection of repetitive sequences of Trichinella spiralis by the polymerase chain reaction in experimentally infected mice. Parasitology Research 77, 180182.CrossRefGoogle ScholarPubMed
Durette-Desset, M-C., Kinsella, J.M. & Forrester, D.J. (1972) Arguments en faveur de la double origine des nematodes nearctiques du genre Heligmosomoides Hall, 1916. Annales de Parasitologie 47, 365382.Google Scholar
Ferris, V.R., Ferris, J.M. & Fagihi, J. (1993) Variations in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes. Fundamental and Applied Nematology 16, 177184.Google Scholar
Gasser, R.B., Chilton, N.B., Hoste, H. & Stevenson, L.A. (1994) Species identification of trichostrongyle nematodes by PCR-linked RFLP. International Journal for Parasitology 24, 291293.CrossRefGoogle ScholarPubMed
Gregory, R.D. (1992) On the interpretation of host–parasite ecology: Heligmosomoides polygyrus (Nematoda) in wild wood mouse (Apodemus sylvaticus) populations. Journal of Zoology 226, 109121.CrossRefGoogle Scholar
Gregory, R.D., Keymer, A.E. & Clarke, J.R. (1990) Genetics, sex and exposure: the ecology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology 59, 363378.CrossRefGoogle Scholar
Gregory, R.D. & Montgomery, S.S.J. & Montgomery, W.I. (1992) Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology 61, 749757.CrossRefGoogle Scholar
Hominick, W.M., Briscoe, B.R., del, Pino F.G., Heng, J., Hunt, D.J., Kozodoy, E., Mracek, Z., Nguyen, K.B., Reid, A.P., Spiridonov, S., Stock, P., Sturhan, D., Waturu, C. & Yoshida, M. (1997) Biosystematics of entomopathogenic nematodes: current status, protocols and definitions. Journal of Helminthology 71, 271298.CrossRefGoogle ScholarPubMed
Keymer, A.E. (1985) Experimental epidemiology: Nematospiroides dubius and the laboratory mouse. pp. 5575 in Rollinson, D. & Anderson, R.M. (Eds) Ecology and genetics of host-parasite interactions. London, Academic Press.Google Scholar
Keymer, A.E. & Slater, A.F.G. (1990) Animal models and epidemiology. pp. 129144 in Schad, G.A. & Warren, K.S. (Eds) Hookworm disease. London, Taylor & Francis.Google Scholar
Lewis, J.W. (1968) Studies on the helminth parasites of the long-tailed field mouse, Apodemus sylvaticus from Wales. Journal of Zoology 154, 287312.CrossRefGoogle Scholar
Lewis, J.W. (1987) Helminth parasites of British rodents and insectivores. Mammal Review 17, 8193.CrossRefGoogle Scholar
Lewis, J.W. & Twigg, G.I. (1972) A study of the internal parasites of small rodents from woodland areas in Surrey. Journal of Zoology 166, 6177.CrossRefGoogle Scholar
McCutchan, T.F., Simpson, A.J.G., Mullins, J.A., Sher, A., Nash, T.E., Lewis, F. & Richards, C. (1994) Differentiation of schistosomes by species, strain, and sex by using cloned DNA markers. Proceedings of the National Academy of Sciences, USA 81, 889893.CrossRefGoogle Scholar
McManus, D.P. & Rishi, A.K. (1989) Genetic heterogeneity within Echinococcus granulosus: isolates from different hosts and geographical areas characterized with DNA probes. Parasitology 99, 1929.CrossRefGoogle ScholarPubMed
Reid, A.P. & Hominick, W.M. (1993) Cloning of the rDNA repeat unit from a British entomopathogenic nematode (Steinernematidae) and its potential for species identification. Parasitology 107, 529536.CrossRefGoogle Scholar
Rollinson, D., Walker, T.K. & Simpson, A.J.G. (1986) The application of recombinant DNA technology to problems of helminth identification. Parasitology 91(Suppl.), S53S71.CrossRefGoogle Scholar
Roos, M.H., Hoekstra, R., Plas, M.E., Otsen, M. & Lenstra, J.A. (1998) Polymorphic DNA markers in the genome of parasitic nematodes. Journal of Helminthology 72, 291294.CrossRefGoogle ScholarPubMed
Vrain, T.C., Wakarchuk, D.A., Levesque, A.C. & Hamilton, R.I. (1992) Intraspecific rDNA restriction fragment length polymorphisms in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563574.Google Scholar