Hostname: page-component-55f67697df-4ks9w Total loading time: 0 Render date: 2025-05-12T22:54:22.956Z Has data issue: false hasContentIssue false

First report of a morulated Ascaridoidea (Nematoda) egg in an avian coprolite from the Paleogene of the Paraíba Valley, State of São Paulo, Brazil

Published online by Cambridge University Press:  11 November 2024

G. Macêdo do Carmo*
Affiliation:
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Presidente Antônio Carlos Ave., 31270-901, Belo Horizonte, Brazil
A. Hadassa da Silva Guilherme Luiz
Affiliation:
Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, José Lourenço Kelmer Str., 36036-900, Juiz de Fora, Brazil
J.F. Passos
Affiliation:
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Presidente Antônio Carlos Ave., 31270-901, Belo Horizonte, Brazil
S. de Souza Lima
Affiliation:
Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, José Lourenço Kelmer Str., 36036-900, Juiz de Fora, Brazil
Hermínio I. de Araújo-Júnior
Affiliation:
Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, São Francisco Xavier Str., 20550-013, Rio de Janeiro, Brazil
F.B. Pereira
Affiliation:
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Presidente Antônio Carlos Ave., 31270-901, Belo Horizonte, Brazil.
*
Corresponding author: G. Macêdo do Carmo; Email: [email protected]

Abstract

Ascaridoidea (Nematoda) is a widespread superfamily of nematodes that comprises gastrointestinal parasites from all major groups of vertebrates. Although this taxon probably emerged in the Carboniferous, its Brazilian fossil record includes mostly eggs, found in ancient remains, collected in paleontological and archeological sites from the Mesozoic and Cenozoic Eras. The Tremembé Formation (Oligocene of the Taubaté Basin) has become an important source for paleoparasitological studies in avian coprolites during the third decade of the 21st century, with reports of eggs only at only a single cell stage, of embryonic development. Here we present the first egg of Ascaridoidea preserved containing morula, from a bird coprolite recovered from the shales of the Tremembé Formation. Three coprolites, from the outcrop of Aligra Comércio de Argila S/A, Taubaté municipality (State of São Paulo), were rehydrated and subjected to spontaneous sedimentation. Based on morphological and morphometric features and diet and zoopaleontological context, the trace fossils were assigned to piscivorous birds. The egg found showed morphological characteristics typical of Ascaridoidea: namely spherical form, ornamented, and somewhat thick shell. Moreover, this superfamily includes several taxa that infect piscivorous birds and fish in heteroxenous life cycles and produce eggs with similar features as the egg found in the present study. The paleoparasitological information associated with the paleofaunistic diversity of birds and fish from the Tremembé Formation, reveal that the ancient Brazilian paleoenvironments provided subsidies for the rise and success of nematodes infecting these animals during the Paleogene.

Type
Short Communication
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, R.C. (2000) Nematode parasites of vertebrates: their development and transmission. CABI Publishing, New York.CrossRefGoogle Scholar
Berto, B.P., Mcintosh, D., and Lopes, C.W.G. (2014) Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida). Revista Brasileira de Parasitologia Veterinária 23(1): 115. https://doi.org/10.1590/s1984-29612014001CrossRefGoogle ScholarPubMed
Callen, E.O. (1967). Analysis of Tehuacan coprolites. In: Macneish, R.S., Byers, D.S. The Prehistory of the Tehuacan Valley: Volume One Environment and Subsistence, University of Texas Press, Great Britain, pp 261289.Google Scholar
Camacho, M., Pessanha, T., Leles, D., Dutra, J.M.F., Silva, R., Souza, S.M., and Araujo, A. (2013) Lutz’s spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments. Mem Inst Oswaldo Cruz 108: 155159. https://doi.org/10.1590/0074-0276108022013005CrossRefGoogle ScholarPubMed
Carrera-Játiva, P.D., Rodríguez-Hidalgo, R., Sevilla, C., and Jiménez-Uzcátegui, G. (2014) Gastrointestinal parasites in the Galápagos Penguin Spheniscus mendiculus and the flightless cormorant Phalacrocorax Harrisi in the Galápagos Islands. Marine Ornithology 42(1): 7780.Google Scholar
Cardia, D.F.F., Bertini, R.J., Camossi, L.G., and Letizio, L.A. (2018) The first record of Ascaridoidea eggs discovered in Crocodyliformes hosts from the Upper Cretaceous of Brazil. Revista Brasileira de Paleontologia 21(3): 238244. https://doi.org/10.4072/rbp.2018.3.04CrossRefGoogle Scholar
Cardia, D.F.F., Bertini, R.J., Camossi, L.G., and Letizio, L.A. (2019) Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the Upper Cretaceous. Parasitology International 72: 15. https://doi.org/10.1016/j.parint.2019.101947CrossRefGoogle ScholarPubMed
Carmo, G.M., Garcia, R.A., Vieira, F.M., Lima, S.S., Araújo-Júnior, H.I., and Pinheiro, R.M. (2023) Paleoparasitological study of avian trace fossils from the Tremembé Formation (Oligocene of the Taubaté Basin), São Paulo, Brazil. Journal of South American Earth Sciences 125: 18. https://doi.org/10.1016/j.jsames.2023.104319Google Scholar
Carmo, G.M., Berto, B.P., Pereira, F.B., Lima, S.S., Araújo-Júnior, H.I., and Pinheiro, R.M. (2024a) Protozoan parasites of birds from the Tremembé Formation (Oligocene of the Taubaté Basin), São Paulo, Brazil. International Journal of Paleopathology 45: 4654. https://doi.org/10.1016/j.ijpp.2024.04.003CrossRefGoogle ScholarPubMed
Carmo, G.M., Lima, S.S., Araújo-Júnior, H.I., and Pereira, F.B. (2024b) Paleoparasitological contributions to the study on ancient infections of hominids and other vertebrates in Brazil: a review. Paleontologia em Destaque - Boletim da Sociedade Brasileira de Paleontologia 38(79):4561. https://doi.org/10.4072/paleodest.2023.38.79.04CrossRefGoogle Scholar
Carmo, G.M., Lima, S.S., Araújo-Júnior, H.I., Pinheiro, R.M., Melo, D.J., and Couto-Ribeiro, G. (2024c) Paleo-faunistic checklist of the Tremembé Formation (Oligocene of the Taubaté Basin, Paraíba Valley, Brazil). Terrae Didatica 20: 111. https://doi.org/10.20396/td.v20i00.8674375CrossRefGoogle Scholar
Carvalho, E.L., Santana, R.L.S., Gonçalves, E.C., Pinheiro, R.H.S., and Giese, E.G. (2020) First report of Anisakis sp. (Nematoda: Anisakidae) parasitizing Muscovy duck in Marajó Island, state of Pará, Brazil. Braz J Vet Parasitol 29(2): 19. https://doi.org/10.1590/S1984-29612020015Google ScholarPubMed
Castro, A.C.J., Fernandes, A.C.S., and Carvalho, I.S. (1988) Coprólitos de aves da Bacia de Taubaté, SP. In: Congresso Brasileiro de Geologia, 35, 1988, Belém. Anais […] Belém: Sociedade Brasileira de Geologia. v. 6. p. 23582370. Available at: https://www.researchgate.net/publication/236345336_Coprolitos_de_aves_da_Bacia_de_Taubate_SP. Accessed 14 March 24.Google Scholar
Dentzien-Dias, P.C., Poinar, G. Jr, Figueiredo, A.E.Q., Pacheco, A.C.L., Horn, B.L.D., and Schultz, C.L. (2013) Tapeworm eggs in a 270 million-year-old shark coprolite. PLOS ONE 8(1): 14. https://doi.org/10.1371/journal.pone.0055007CrossRefGoogle Scholar
Fayer, R. (1980) Epidemiology of protozoan infections: the coccidia. Veterinary Parasitology 6(1-3): 75103. https://doi.org/10.1016/0304-4017(80)90039-4CrossRefGoogle Scholar
Ferreira, L.F., Reinhard, K.J., and Araújo, A. (2014) Foundations of Paleoparasitology. Fiocruz, Rio de Janeiro.CrossRefGoogle Scholar
Fugassa, M.H., Araújo, A., and Guichón, R.A. (2006) Quantitative paleoparasitology applied to archaeological sediments. Mem Inst Oswaldo Cruz 101(Suppl.II): 2933. https://doi.org/10.1590/s0074-02762006001000006CrossRefGoogle ScholarPubMed
Gibbons, L.M. (2010) Keys to the Nematode parasites of vertebrates: Supplementary Volume. Wallingford: CABI Publishing.Google Scholar
Gonçalves, M.L.C., Araújo, A., and Ferreira, L.F. (2003) Human intestinal parasites in the past: new findings and a review. Mem Inst Oswaldo Cruz 98: 103118. https://doi.org/10.1590/S0074-02762003000900016CrossRefGoogle ScholarPubMed
Guedes, L., Borba, V.H., Camacho, M., Neto, J., Dias, O., and Iñiguez, A.M. (2020) African helminth infection out of Africa: paleoparasitological and paleogenetic investigations in Pretos Novos cemetery, Rio de Janeiro, Brazil (1769–1830). Acta Tropica 205: 16. https://doi.org/10.1016/j.actatropica.2020.105399CrossRefGoogle Scholar
Hartwich, G. (2009) Ascaridida: Ascaridoidea. In: Anderson, R.C., Chabaud, A.G., Willmott, S. (eds). Keys to the Nematode parasites of vertebrates: Archival Volume, CABI Publishing, Wallingford, pp 309323.CrossRefGoogle Scholar
Herreras, M.V., Montero, F.E., Marcogliese, D.J., Raga, J.A., and Balbuena, J.A. (2007) Phenotypic tradeoffs between egg number and egg size in three parasitic anisakid nematodes. Oikos 116(10):17371747. https://doi.org/10.1111/j.0030-1299.2007.16016.xCrossRefGoogle Scholar
Hodda, M. (2022) Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 5114(1): 001289. https://doi.org/10.11646/zootaxa.5114.1.1CrossRefGoogle ScholarPubMed
Hoffman, W.A., Pons, J.A., and Janer, J.L. (1934) The sedimentation concentration method in schistosomiasis mansoni. Puet Rico J Publ Health Trop Med 9: 283289.Google Scholar
Huizinga, H.W. (1967) The Life Cycle of Contracaecum multipapillatum (von Drasche, 1882) Lucker, 1941 (Nematoda: Heterochelidae). The Journal of Parasitology 53(2):368375. https://doi.org/10.2307/3276593CrossRefGoogle ScholarPubMed
Iñiguez, A.M., Brito, L., Guedes, L., and Chaves, S.A.M. (2022) Helminth infection and human mobility in sambaquis: paleoparasitological, paleogenetic, and microremains investigations in Jabuticabeira II, Brazil (2890±55 to 1805±65 BP). The Holocene 32: 200207. https://doi.org/10.1177/09596836211060490CrossRefGoogle Scholar
Jaeger, L.H., Taglioretti, V., Dias, O., and Iñiguez, A.M. (2013a) Paleoparasitological analysis of human remains from a European cemetery of the 17th–19th century in Rio de Janeiro, Brazil. International Journal of Paleopathology 3: 214217. https://doi.org/10.1016/j.ijpp.2013.04.001CrossRefGoogle ScholarPubMed
Jaeger, L.H., Taglioretti, V., Fugassa, M.H., Dias, O., Neto, J., and Iñiguez, A.M. (2013b) Paleoparasitological results from XVIII century human remains from Rio de Janeiro, Brazil. Acta Tropica 125: 282286. https://doi.org/10.1016/j.actatropica.2012.11.007CrossRefGoogle ScholarPubMed
Koie, M., and Fagerholm, H.-P. (1995) The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitol Res 81(6): 481489. https://doi.org/10.1007/bf00931790CrossRefGoogle ScholarPubMed
Leles, D., Araújo, A., Ferreira, L.F., Vicente, A.C.P., and Iñiguez, A.M. (2008) Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: new scenery of ascariasis in pre-Columbian South America times. Mem Inst Oswaldo Cruz 103: 106108. https://doi.org/10.1590/s0074-02762008005000004CrossRefGoogle ScholarPubMed
Li, L., , L., Nadler, S.A., Gibson, D.I., Zhang, L.P., Chen, H.X., Zhao, W.T., and Guo, Y.N. (2018) Molecular phylogeny and dating reveal a terrestrial origin in the early Carboniferous for Ascaridoid Nematodes. Syst Biol 67(5): 888900. https://doi.org/10.1093/sysbio/syy018CrossRefGoogle ScholarPubMed
Olson, S.L., and Alvarenga, H.M.F. (2002) A new genus of small teratorn from the Middle Tertiary of the Taubaté Basin, Brazil (Aves: Teratornithidae). Proc Biol Soc 115(4): 701705.Google Scholar
Poinar, G. Jr, and Boucot, A.J. (2006) Evidence of intestinal parasites of dinosaurs. Parasitology 133(2): 245249. https://doi.org/10.1017/S0031182006000138CrossRefGoogle ScholarPubMed
Sianto, L., Souza, M.V., Chame, M., Luz, M.F., Guidon, N., Pessis, A., and Araújo, A. (2014) Helminths in feline coprolites up to 9000 years in the Brazilian Northeast. Parasitology International 63: 851857. https://doi.org/10.1016/j.parint.2014.08.002CrossRefGoogle ScholarPubMed
Silva, P.A., Borba, V.H., Dutra, J.M.F., Leles, D., Da-Rosa, A.A.S., Ferreira, L.F., and Araujo, A. (2014) A new ascarid species in cynodont coprolite dated of 240 million years. Anais da Academia Brasileira de Ciências 86(1): 265269. https://doi.org/10.1590/0001-3765201320130036CrossRefGoogle ScholarPubMed
Souto, P.R.F. (2017) Icnologia de Paleovertebrados. Rio de Janeiro: Letra Capital.Google Scholar
Supplementary material: File

do Carmo et al. supplementary material

do Carmo et al. supplementary material
Download do Carmo et al. supplementary material(File)
File 2 MB