Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T06:42:15.378Z Has data issue: false hasContentIssue false

Fertilization state of Ascaris suum determined by electrorotation

Published online by Cambridge University Press:  12 April 2024

C. Dalton*
Affiliation:
Bio Systems Research and Applications Group, Department of Electrical and Computer Engineering, University of Calgary, Calgary, T2N 1N4, Canada
A.D. Goater
Affiliation:
Institute of Bioelectronic and Molecular Microsystems, University of Wales, Bangor, Gwynedd, LL57 1UT, UK
H.V. Smith
Affiliation:
Scottish Parasite Diagnostic Laboratory, Stobhill Hospital, Springburn, Glasgow, G21 3UW, UK.
*
* Fax: 403 282 6855 E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electrorotation is a non-invasive technique that is capable of detecting changes in the morphology and physicochemical properties of microorganisms. The first detailed electrorotation study of the egg (ovum) of a parasitic nematode, namely Ascaris suum is described to show that electrorotation can rapidly differentiate between fertilized and non-fertilized eggs. Support for this conclusion is by optical microscopy of egg morphology, and also from modelling of the electrorotational response. Modelling was used to determine differences in the dielectric properties of the unfertilized and fertilized eggs, and also to investigate specific differences in the spectra of fertilized eggs only, potentially reflecting embryogenesis. The potential of electrorotation as an investigative tool is shown, as undamaged eggs can be subjected to further non-destructive and destructive techniques, which could provide further insight into parasite biology and epidemiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Footnotes

Where the work was performed

References

Ananthakrishnan, S., Nalini, P. & Pani, S.P. (1997) Intestinal geohelminthiasis in the developing world. National Medical Journal of India 10, 6771.Google ScholarPubMed
Arnold, W.M. & Zimmermann, U. (1982) Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa . Zeitschrift für Naturforschung C 37, 908915.CrossRefGoogle Scholar
Arnold, W.M., Schwan, H.P. & Zimmermann, U. (1987) Surface conductance and other properties of latex particles measured by electrorotation. Journal of Physical Chemistry 91, 50935098.CrossRefGoogle Scholar
Asami, K., Hanai, T. & Koizumi, N. (1976) Dielectric properties of yeast-cells. Journal of Membrane Biology 28, 169180.CrossRefGoogle ScholarPubMed
Carneiro, F.F., Cifuentes, E., Tellez-Rojo, M.M. & Romieu, I. (2002) The risk of Ascaris lumbricoides infection in children as an environmental health indicator to guide preventative activities in Caparaó and Alto Caparaó, Brazil. Bulletin of the World Health Organization 80, 4046.Google ScholarPubMed
Cen, E.G., Dalton, C., Li, Y., Adamia, S., Pilarski, L.M. & Kaler, K.V.I.S. (2004) A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of leukemia cells. Journal of Microbiological Methods 58, 387401.CrossRefGoogle Scholar
Chan, K.L., Gascoyne, P.R.C., Becker, F.F. & Pethig, R. (1997) Electrorotation of liposomes: verification of dielectric multi-shell model for cells. Biochimica et Biophysica Acta–Lipids and Lipid Metabolism 1349, 182196.CrossRefGoogle ScholarPubMed
Crompton, D.W.T. (Ed.) (1985) Ascariasis and its public health significance, London, Taylor & Francis.Google Scholar
Crompton, D.W.T. (1988) The prevalence of ascariasis. Parasitology Today 4, 162169.CrossRefGoogle ScholarPubMed
Crompton, D.W.T. (1999) How much human helminthiasis is there in the world? Journal of Parasitology 85, 397403.CrossRefGoogle ScholarPubMed
Dalton, C., Pethig, R., Paton, C.A. & Smith, H.V. (1999) Electrorotation of oocysts of Cyclospora cayetanensis . Institute of Physics Conference Series 163, 8588.Google Scholar
Dalton, C., Goater, A.D., Drysdale, J. & Pethig, R. (2001a) Parasite viability by electrorotation. Colloids and Surfaces A–Physicochemical and Engineering Aspects 195, 263268.Google Scholar
Dalton, C., Goater, A.D., Pethig, R. & Smith, H.V. (2001b) Viability of Giardia intestinalis cysts and viability and sporulation state of Cyclospora cayetanensis oocysts determined by electrorotation. Applied and Environmental Microbiology 67, 586590.CrossRefGoogle ScholarPubMed
Dalton, C., Goater, A.D., Burt, J.P.H. & Smith, H.V. (2004) Analysis of parasites by electrorotation. Journal of Applied Microbiology 96, 2432.CrossRefGoogle ScholarPubMed
Darben, P. (2002). PhD thesis University of Queensland, Accessed online 8 August 2002. http://www.life.sci.qut.edu.au/lifesci/darben/FIGS/. Google Scholar
DeGasperis, G., Wang, X.B., Yang, J., Becker, F.F. & Gascoyne, P.R.C. (1998) Automated electrorotation: dielectric characterisation of living cells by real time motion estimation. Measurement Science and Technology 9, 518529.CrossRefGoogle Scholar
Dossa, R.A., Ategbo, E.A.D., de Konig, F.L.H.A., van Raaij, J.M.A. & Hautvast, J.G.A.J. (2001) Impact of iron supplementation and deworming on growth performance in preschool Beninese children. European Journal of Clinical Nutrition 55, 223228.CrossRefGoogle ScholarPubMed
Embil, J.A., Pereira, C.H. & White, F.H. (1984) Prevalence of Ascaris lumbricoides infection in a small Neggs Scotian community. American Journal of Tropical Medicine and Hygiene 33, 595598.CrossRefGoogle Scholar
Fairbairn, D. (1957) The biochemistry of Ascaris . Experimental Parasitology 6, 491554.CrossRefGoogle ScholarPubMed
Foor, W.E. (1967) Ultrastructural aspects of oocyte development and shell formation in Ascaris lumbricoides . Journal of Parasitology 53, 12451261.CrossRefGoogle ScholarPubMed
Gascoyne, P.R.C., Wang, X.-B., Huang, Y. & Becker, F.F. (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Transactions on Industry Applications 33, 670678.CrossRefGoogle ScholarPubMed
Gaspard, P., Ambolet, Y. & Schwartzbrod, J. (1997) Urban sludge reused for agricultural purposes: soils contamination and model development for the parasitological risk assessment. Bulletin de l'Académie Nationale de Médecine 181, 4357.Google Scholar
Gilgen, D.D., Mascie-Taylor, C.G.N. & Rosetta, L. (2001) Intestinal helminth infections, anaemia and labour productivity of female tea pluckers in Bangladesh. Tropical Medicine and International Health 6, 449457.CrossRefGoogle ScholarPubMed
Gimsa, J., Pritzen, C. & Donath, E. (1989) Characterisation of virus-red-cell interaction by electrorotation. Studia Biophysica 130, 123131.Google Scholar
Gimsa, J., Marszlatek, P., Loewe, U. & Tsong, T.Y. (1991) Dielectrophoresis and electrorotation of Neurospora slime and murine myeloma cells. Biophysics Journal 60, 749760.CrossRefGoogle ScholarPubMed
Goater, A.D. & Pethig, R. (1998) Electrorotation and dielectrophoresis. Parasitology 117, S177S189.CrossRefGoogle ScholarPubMed
Goater, A.D., Burt, J.P.H. & Pethig, R. (1997) A combined electrorotation and travelling wave device: applied to the concentration and viability of Cryptosporidium Journal of Physics D–Applied Physics 33, L65L70.CrossRefGoogle Scholar
Hadju, V., Stephenson, L.S., Abadi, K., Mohammed, H.O., Bowman, D.D. & Parker, R.S. (1996) Improvements in appetite and growth in helminth infected schoolboys three and seven weeks after a single dose of pyrantel pamoate. Parasitology 113, 497504.CrossRefGoogle ScholarPubMed
Hlaing, T. (1993) Ascariasis and childhood malnutrition. Parasitology 107, S125S136.CrossRefGoogle ScholarPubMed
Hodgson, C.E. & Pethig, R. (1998) Determination of the viability of Escherichia coli at the single organism level by electrorotation. Clinical Chemistry 44, 20492051.CrossRefGoogle ScholarPubMed
Hoover, T. (1997) Diagnosis and economics of external and internal swine parasites. Pfizer Animal Health Technology Bulletin 1–6 08 1997.Google Scholar
Horton, J. (2003) Human gastrointestinal helminth infections: are they now neglected diseases? Trends in Parasitology 19, 527531.CrossRefGoogle ScholarPubMed
Huang, Y., Hölzel, R., Pethig, R. & Wang, X.-B. (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electro-rotation studies. Physics in Medicine and Biology 37, 14991517.CrossRefGoogle Scholar
Jaskoski, B.J. (1962) Paper chromatography of some fractions of Ascaris suum . Experimental Parasitology 12, 1924.CrossRefGoogle ScholarPubMed
Jones, T.B. (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Engineering in Medicine and Biology Magazine 6, 3342.CrossRefGoogle Scholar
Kakutani, T., Shibatani, S. & Sugai, M. (1993) Electrorotation of non-spherical cells: theory for ellipsoidal cells with an arbitrary number of shells. Bioelectrochemistry and Bioenergetics 31, 131145.CrossRefGoogle Scholar
Krasnosos, L.N. (1978) Long term survival of ascarid eggs–Ascaris lumbricoides L. 1758–in the soil of Samarkand. Meditsinskaya Parazitologiya i Parazitarnye Bolezni 47, 103105.Google Scholar
Latham, L., Latham, M. & Basta, S.S. (1977) The nutritional and economic implications of Ascaris infection in Kenya. Staffa working paper No. 271, International Bank for Reconstruction and Development, Washington, World Bank.Google Scholar
Meeking, H.J., Stentiford, E.I. & Lee, D.L. (1996) The effect of sewage-sludge compost on the viability of the eggs of a parasitic nematode. Compost Science and Utility 4, 4654.CrossRefGoogle Scholar
Mischel, M., Voss, A. & Pohl, H.A. (1982) Cellular spin resonance in rotating electric fields. Journal of Biological Physics 10, 223226.CrossRefGoogle Scholar
Morgan, H. & Green, N.G. (2003) AC electrokinetics: colloids and nanoparticles, Baldock, UK, Research Studies Press Ltd. Google Scholar
Simeon, D.T., Grantham-McGregor, S.M., Callender, J.E. & Wong, M.S. (1995) Treatment of Trichuris trichiura infections improves growth, spelling scores and school attendance in some children. Journal of Nutrition 125, 18751883.CrossRefGoogle ScholarPubMed
Smith, H.V. (1989) A rapid method for hatching infective eggs of Toxocara canis . Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 215.CrossRefGoogle ScholarPubMed
Stephenson, L.S., Latham, M.C., Adams, E.J., Kinoti, S.N. & Pertet, A. (1993a) Weight gain of Kenyan school children infected with hookworm, Trichuris trichiura and Ascaris is improved following once or twice yearly treatment with albendazole. Journal of Nutrition 123, 656665.CrossRefGoogle ScholarPubMed
Stephenson, L.S., Latham, M.C., Adams, E.J., Kinoti, S.N. & Pertet, A. (1993b) Physical fitness, growth and appetite of Kenyan schoolboys with hookworm, Trichuris trichiura and Ascaris lumbriciodes infection are improved four months after a single dose of albendazole. Journal of Nutrition 123, 10361046.Google Scholar
Tarr, G.E. & Fairbairn, D. (1973a) Ascarosides of the ovaries and eggs of Ascaris lumbricoides (Nematoda). Lipids 8, 716.CrossRefGoogle ScholarPubMed
Tarr, G.E. & Fairbairn, D. (1973b) Conversion of ascaroside esters to free ascarosides in fertilized eggs of Ascaris suum (Nematoda). Journal of Parasitology 59, 429433.CrossRefGoogle ScholarPubMed
Torlesse, H. & Hodges, M. (2001) Albendazole therapy and reduced decline in haemoglobin concentration during pregnancy (Sierra Leone). Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 195201.CrossRefGoogle ScholarPubMed
Watkins, W.E. & Pollitt, E. (1997) ‘Stupidity or worms’: do intestinal worms impair mental performance? Psychology Bulletin 121, 171191.CrossRefGoogle ScholarPubMed
WHA (2001) Schistosomiasis soil-transmitted helminth infections. 54th World Health Assembly, resolution WHA54.19.Google Scholar
Zhou, X.-F., Markx, G.H. & Pethig, R. (1996) Effect of biocide concentration on electrorotation spectra of yeast cells. Biochimica et Biophysica Acta–Biomembranes 1281, 6064.CrossRefGoogle ScholarPubMed
Zhou, X.-F., Burt, J.P.H. & Pethig, R. (1998) Automatic cell electrorotation measurements: applied to studies of the biological effects of low-frequency magnetic fields and of heat shock. Physics in Medicine and Biology 43, 10751090.CrossRefGoogle ScholarPubMed