Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T12:11:56.577Z Has data issue: false hasContentIssue false

Expression of Hsp90, Hsp70 and Hsp60 in Trichinella species exposed to oxidative shock

Published online by Cambridge University Press:  12 April 2024

J. Martinez*
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain
J. Perez-Serrano
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain
W.E. Bernadina
Affiliation:
Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, PO Box 80165, 3508 TD Utrecht, The Netherlands
F. Rodriguez-Caabeiro
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain
*
*Fax: 34 91 8854663 E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stress response and phosphorylation of heat shock proteins (HSPs) 60, 70 and 90 were studied in Trichinella nativa, T. nelsoni, T. pseudospiralis and T. spiralis larvae at 30-min intervals following exposure to 20, 100 and 200 mM H2O2. There was a time- and dose-dependent differential survival for the infective stage larvae (L1) of these four Trichinella species. Immunoblotting analysis revealed that constitutive Hsp60 and Hsp70, but not Hsp90, from test Trichinella species are constitutively phosphorylated on serine/threonine residues as they converted to forms with increased sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) mobility by treatment with alkaline phosphatase. After exposure to H2O2, while there was a time-related occurrence of the three HSPs with decreased SDS–PAGE mobility, these HSPs were insensitive to alkaline phosphatase except in the case of exposure to 20 mM H2O2 for Hsp60 from all Trichinella species and Hsp70 from T. spiralis and T. nelsoni. The synthesis of HSPs forms with decreased SDS–PAGE mobility is a susceptibility signal because the lower concentration of peroxide (20 mM) did not cause a decrease on HSPs SDS–PAGE mobility in T. spiralis and T. nelsoni, the two more resistant selected Trichinella species.

Type
Other
Copyright
Copyright © Cambridge University Press 2002

References

Bell, R.G. & Wang, C.H. (1987) The Trichinella spiralis newborn larvae: production, migration and immunity in vivo . Wiadomosci Parazytologiczne 4–5, 453478.Google ScholarPubMed
Bell, R.G. (1998) The generation and expression of immunity to Trichinella spiralis in laboratory rodents. Advances in Parasitology 41, 149217.CrossRefGoogle ScholarPubMed
Brand, T., Weistein, P., Mehlan, B. & Weinbach, E. (1952) Observation on the metabolism of bacteria free larvae of Trichinella spiralis . Experimental Parasitology 1, 245255.CrossRefGoogle Scholar
Bruschi, F., Carulli, G., Azzarà, A., Homan, W., Minnucci, S., Rizzuti-Gillaci, A., Sbraa, S. & Angiolini, C. (2000) Inhibitory effects of human neutrophil functions by the 45–kD glycoprotein derived from the parasitic nematode Trichinella spiralis . International Archives of Allergy and Applied Immunology 122, 5865.CrossRefGoogle ScholarPubMed
Bukau, B. & Horwich, A.L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351366.CrossRefGoogle ScholarPubMed
Buys, J., Wever, R., Van Stigt, R. & Ruitenberg, E.J. (1981) The killing of newborn larvae of Trichinella spiralis by eosinophil peroxidase in vitro . European Journal of Immunology 11, 843845.CrossRefGoogle ScholarPubMed
Edelman, A.M. & Blumenthal, D.K. (1987) Protein serine/threonine kinases. Annual Review of Biochemistry 56, 567613.CrossRefGoogle ScholarPubMed
Hadas, E., Rodriguez-Caabeiro, F. & Jimenez-Gonzalez, A. (1994) Oxidant defenses in different isolates of Trichinella . Acta Parasitologica 39, 3236.Google Scholar
Jenkins, D.C. & Carrington, T.S. (1981) An in vitro screening test for compounds active againts the parenteral stages of Trichinella spiralis . Tropenmedizin und Parasitologie 32, 3134.Google Scholar
Kazura, J.W. & Grove, D.I. (1978) Stage-dependent antibody-dependent eosinophil-mediated destruction of Trichinella spiralis . Nature 274, 588589.CrossRefGoogle Scholar
Kazura, J.W. & Meshnick, S.R. (1984) Scavenger enzymes and resistance to oxygen mediated damage in Trichinella spiralis . Molecular and Biochemical Parasitology 10, 110.CrossRefGoogle ScholarPubMed
La Rosa, G., Pozio, E., Rossi, P. & Murrell, K.D. (1992) Allozyme analysis of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 641646.CrossRefGoogle ScholarPubMed
Lindquist, S. (1986) The heat shock response. Annual Review of Biochemistry 55, 11511191.CrossRefGoogle ScholarPubMed
Martinez, J., Perez-Serrano, J., Bernadina, W.E. & Rodriguez-Caabeiro, F. (1999) In vitro stress response to elevated temperature, hydrogen peroxide and mebendazole in Trichinella spiralis muscle larvae. International Journal for Parasitology 29, 14571464.CrossRefGoogle ScholarPubMed
Martinez, J., Perez-Serrano, J., Bernadina, W.E. & Rodriguez-Caabeiro, F. (2000) Detection of heat shock protein-70 from Trichinella spiralis larvae using a modification of the routine Western blotting procedure. Journal of Parasitology 86, 637639.CrossRefGoogle ScholarPubMed
Mehlen, P., Schultze-Osthoff, K. & Arrigo, A.P. (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1 and staurosporine-induced cell death. Journal of Biological Chemistry 271, 1651016514.Google ScholarPubMed
Murray, E.S., Smith, V.P., Thomas, G.R. & Gounaris, K. (1998) Resistance of filarial nematode parasites to oxidative stress. International Journal for Parasitology 28, 13151332.Google Scholar
Ou, X., Thomas, G.R., Chacón, M.R., Tang, L. & Selkirk, M.E. (1995) Brugia malayi: differential susceptibility to a metabolism of hydrogen peroxide in adults and microfilariae. Experimental Parasitology 80, 530540.CrossRefGoogle ScholarPubMed
Polla, B.S., Perin, M. & Pizurki, L. (1993) Regulation and function of stress proteins in allergy and inflammation. Clinical and Experimental Allergy 23, 548556.CrossRefGoogle Scholar
Pozio, E., La Rosa, G. & Rossi, P. (1989) Present status of the taxonomy of the Trichinella genus. Wiadomosci Parazytologiczne 5, 483484.Google Scholar
Pozio, E., La Rosa, G., Murell, K.D. & Lichtenfels, J.R. (1992) Taxonomic revision of the genus Trichinella . Journal of Parasitology 78, 654659.CrossRefGoogle ScholarPubMed
Schlesinger, M.J. (1990) Heat shock proteins. Journal of Biological Chemistry 265, 1211112114.CrossRefGoogle ScholarPubMed
Wakelin, D. (1984) Evasion of the immune response: survival within low responder individuals of the host population. Parasitology 88, 639657.CrossRefGoogle ScholarPubMed
Wang, C.H. & Bell, R.G. (1988) Antibody-mediated in-vivo cytotoxicity to Trichinella spiralis newborn larvae in immune rats. Parasite Immunology 10, 293308.CrossRefGoogle ScholarPubMed
Weiss, S.J., Test, S.T., Eckmann, C.M., Roos, D. & Regiani, S. (1986) Brominating oxidants generated by human eosinophils. Science 234, 200203.CrossRefGoogle ScholarPubMed