Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T02:41:05.236Z Has data issue: false hasContentIssue false

Endoparasite fauna of freshwater fish from the upper Juruá River in the Western Amazon, Brazil

Published online by Cambridge University Press:  29 July 2022

L.R. Virgilio*
Affiliation:
Programa de Pós-Graduação em Biodiversidade e Biotecnologia (Bionorte), Universidade Federal do Acre (UFAC), Rio Branco, Acre, Brazil
W.M.O. Martins
Affiliation:
Laboratório de Biologia Geral do Instituto Federal de Acre (IFAC), Campus Cruzeiro do Sul, Acre, Brazil
F.S. Lima
Affiliation:
Laboratório de ecologia aquática, Universidade Federal do Acre (UFAC), Cruzeiro do Sul, Campus Floresta, Acre, Brazil
R.M. Takemoto
Affiliation:
Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Laboratório de Ictioparasitologia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
L.M.A. Camargo
Affiliation:
Instituto Nacional de Epidemiologia da Amazônia Ocidental, Porto Velho, Rondônia, Brazil
D.U.O Meneguetti
Affiliation:
Programa de Pós-Graduação em Biodiversidade e Biotecnologia (Bionorte), Universidade Federal do Acre (UFAC), Rio Branco, Acre, Brazil Laboratório de Medicina Tropical, Universidade Federal do Acre, Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde na Amazônia Ocidental, Rio Branco, Acre, Brazil
*
Author for correspondence: L.R. Virgilio, E-mail: [email protected]

Abstract

The Amazon region may present a high diversity of endoparasites with a high degree of endemism. In this sense, this study describes the endoparasite fauna in freshwater fish from the Upper Juruá, in the Western Amazon. The study was carried out around the municipalities of Cruzeiro do Sul, state of Acre, and Guajará, state of Amazonas, Brazil. Fish were caught between periods of droughts and floods, using passive and active sampling methods. In the laboratory, specimens were biometrically analysed and necropsied. As a result, a total of 23,740 endoparasites were recorded, belonging to 62 species, with 91 new host reports and 91 new occurrences for the Western Amazon. Nematoda and Digenea were the most diverse and abundant groups, and the increase in host fish richness and diversity influenced the diversity and richness of endoparasites in the environments. In this sense, the present study expands the number of new reports, and contributes data on the distribution and richness of endoparasites for South America.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, AA, Smit, NJ and da Silva, RJ (2020) Diversity of helminth parasites of eight siluriform fishes from the Aguapeí River, upper Paraná basin, São Paulo state, Brazil. International Journal for Parasitology: Parasites and Wildlife 11, 120128.Google ScholarPubMed
Arévalo, EG, Morey, GMA and Malta, JCO (2018) Parasitic fauna of Prochilodus nigricans (Prochilodontidae) from Brazilian Amazon floodplain lakes. Biota Amazônia, (1), 1921.Google Scholar
Azevedo, RKde, Abdallah, VD and Luque, JL (2016) Acanthocephala, Annelida, Arthropoda, Myxozoa, Nematoda and platyhelminthes parasites of fishes from the Guandu river, Rio de Janeiro, Brazil. Check List 6(4), 659667.CrossRefGoogle Scholar
Baia, RRJ, Florentino, AC, Silva, LMA and Tavares-Dias, M (2018) Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region. Acta Parasitologica 63(2), 304316.CrossRefGoogle Scholar
Barros, MFdeS, Almeida, ZdaS, Figueiredo, MB, Nunes, JLS and Carvalho Neta, RNF (2021) Ecologia alimentar de Hassar affinis (Actinopterygii: Doradidae) em dois lagos de uma zona úmida de importância internacional no Nordeste do Brasil. Research, Society and Development 10(8). doi:10.33448/rsd-v10i8.16973Google Scholar
Beevi, MR and Radhakrishnan, S (2012) Community ecology of the metazoan parasites of freshwater fishes of Kerala. Journal of Parasitic Diseases 36(2), 184196.CrossRefGoogle ScholarPubMed
Borges, WF, de Oliveira, MSB, Santos, GG and Tavares-Dias, M (2018) Parasites in Loricariidae from Brazil: checklist and new records for fish from the Brazilian Amazon. Acta Scientiarum, Biological Sciences 40(1), 39.CrossRefGoogle Scholar
Bray, RA (2002) Superfamily gymnophalloidea Odhner, 1905. pp. 243244 in Gibson, DI, Jones, A and Bray, R (Eds) Keys to the Trematoda. Wallingford, Publishing and The Natural History Museum.CrossRefGoogle Scholar
Briosio-Aguilar, R, García-Varela, M, Hernández-Mena, DI, Rubio-Godoy, M and De León, GPP (2019) Morphological and molecular characterization of an enigmatic clinostomid trematode (Digenea: Clinostomidae) parasitic as metacercariae in the body cavity of freshwater fishes (Cichlidae) across Middle America. Journal of Helminthology 93(4), 461474.CrossRefGoogle ScholarPubMed
Carlson, CJ, Dallas, TA, Alexander, LW, Phelan, AL and Phillips, AJ (2020) What would it take to describe the global diversity of parasites? Proceedings of the Royal Society B 287(1939), 20201841.CrossRefGoogle ScholarPubMed
Cavalcante, PH, Silva, MT, Santos, EG, Chagas-Moutinho, VA and Santos, CP (2017) Orientatractis moraveci n. sp. and Rondonia rondoni Travassos, 1920 (Nematoda: Atractidae), parasites of Pimelodus blochii (Osteichthyes, Pimelodidae) from the Acre and Xapuri Rivers, Western Amazon, Brazil. Parasitology 144(2), 226236.CrossRefGoogle Scholar
Chambrier, A, Kuchta, R and Scholz, T (2020) Tapeworms (Cestoda: Proteocephalidea) of teleost fishes from the Amazon River in Peru: additional records as an evidence of unexplored species diversity. Revue Suisse de Zoologie, 122(1), 149163.Google Scholar
Dias, PG, Furuya, WM, Pavanelli, GC, Machado, MH and Takemoto, RM (2004) Carga parasitária de Rondonia rondoni, Travassos, 1920 (Nematoda, Atrictidae) e fator de condição do armado, Pterodoras granulosus, Valenciennes, 1833 (Pisces, Doradidae). Acta Scientiarum. Biological Sciences 26(2). doi:10.4025/actascibiolsci.v26i2.1613CrossRefGoogle Scholar
Dobson, A, Lafferty, KD, Kuris, AM, Hechinger, RF and Jetz, W (2008) Homage to Linnaeus: how many parasites? how many hosts? Proceedings of the National Academy of Sciences of thee United States of America 105(Suppl 1), 1148211489.CrossRefGoogle ScholarPubMed
Fortes, E, Mattos, MJde and Oliveira, MFde (2000) Occurrence of Neochinorhynchus curemai Noronha, 1973 (Acanthocephala) in mullet Mugil curema (Cuvier et Valenciennes, 1836) from the estuarial complex of the Potengi river, Natal, RN, Brazil. Revista Brasileira de Medicina Veterinária 22, 174175.Google Scholar
Giesen, SC, Takemoto, RM, Calitz, F, Lizama, MDLAP and Junker, K (2013) Infective pentastomid larvae from Pygocentrus nattereri Kner (Pisces, Characidae) from the Miranda River, Pantanal, Mato Grosso do Sul State, Brazil, with notes on their taxonomy and epidemiology. Folia Parasitologica 60(5), 457468.CrossRefGoogle Scholar
Gonçalves, RA, Oliveira, MSB, Neves, LR and Tavares-Dias, M (2016) Seasonal pattern in parasite infracommunities of Hoplerythrinus unitaeniatus and Hoplias malabaricus (Actinopterygii: Erythrinidae) from the Brazilian Amazon. Acta Parasitologica 61(1). doi:10.1515/ap-2016-0016CrossRefGoogle ScholarPubMed
Hernández-Mena, DI, Lynggaard, C, Mendoza-Garfias, B and de León, Pérez-Ponce, G. (2016) A new species of Auriculostoma (Trematoda: Allocreadiidae) from the intestine of Brycon guatemalensis (Characiformes: Bryconidae) from the Usumacinta River Basin, Mexico, based on morphology and 28S rDNA sequences, with a key to species of the genus. Zootaxa, 261277.CrossRefGoogle ScholarPubMed
Hoshino, ÉM and Tavares-Dias, M (2019) Interannual and seasonal variation in protozoan and metazoan parasite communities of Hemibrycon surinamensis, a characid fish inhabiting the Brazilian Amazon. Acta Parasitologica 64(3), 479488.CrossRefGoogle Scholar
Hoshino, MDFG, Hoshino, ÉM and Tavares-Dias, M (2014) First study on parasites of Hemibrycon surinamensis (Characidae), a host from the eastern Amazon region. Revista Brasileira de Parasitologia Veterinária 23(3). doi:10.1590/S1984-29612014069CrossRefGoogle Scholar
Hoshino, MDFG, Neves, LR and Tavares-Dias, M (2016) Parasite communities of the predatory fish, Acestrorhynchus falcatus and Acestrorhynchus falcirostris, living in sympatry in Brazilian Amazon. Revista Brasileira de Parasitologia Veterinária 25(2). doi:10.1590/S1984-29612016038CrossRefGoogle ScholarPubMed
Jones, A, Jones, A, Bray, RA and Gibson, DI (2005) Keys to the Trematoda volume 2. London, CABI Publishing and The Natural History Museum.CrossRefGoogle Scholar
Lafferty, KD (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology Today 13(7), 251255.CrossRefGoogle ScholarPubMed
Lehun, AL, Hasuike, WT, Silva, JOS and Takemoto, RM (2020) Checklist of parasites in fish from the upper Paraná River floodplain: an update. Revista Brasileira de Parasitologia Veterinária 29(3), 120.CrossRefGoogle ScholarPubMed
Lima, ES, Oliveira, MSB and Tavares-Dias, M (2021) Diversity and community ecology of metazoan parasites in Pimelodus ornatus (Siluriformes: Pimelodidae) from the Amazonas River in Brazil. Revista Brasileira de Parasitologia Veterinária 30(3), 110. [In Portuguese.]CrossRefGoogle ScholarPubMed
Locke, SA, Caffara, M, Marcogliese, DJ and Fioravanti, ML (2015) A large-scale molecular survey of Clinostomum (Digenea, Clinostomidae). Zoologica Scripta 44(2), 203217.CrossRefGoogle Scholar
Luque, JL and Poulin, R (2007) Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology 134(6), 865878.CrossRefGoogle ScholarPubMed
Luque, JL and Poulin, R (2008) Linking ecology with parasite diversity in Neotropical fishes. Journal of Fish Biology 72(1), 189204.CrossRefGoogle Scholar
Luque, JL, Pereira, FB, Alves, PV, Oliva, ME and Timi, JT (2017) Helminth parasites of South American fishes: current status and characterization as a model for studies of biodiversity. Journal of Helminthology 91(2), 150164.CrossRefGoogle ScholarPubMed
Mamontova, O, Kuchko, T, Onishchenko, N and Pavlov, V (2020) Ichthyo-parasitological characteristic of Lake Vokhtozero Roach. KnE Life Sciences 5(1), 173181.Google Scholar
Marcogliese, DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? International Journal for Parasitology 35(7), 705–716.CrossRefGoogle ScholarPubMed
Martins, ML and Yoshitoshi, ER (2003) A new nematode species Goezia leporini n. sp. (Anisakidae) from cultured freshwater fish Leporinus macrocephalus (Anostomidae) in Brazil. Brazilian Journal of Biology 63(3). doi:10.1590/S1519-69842003000300016CrossRefGoogle Scholar
Martins, ML, Fujimoto, RY, Andrade, PM and Tavares-Dias, M (2020) Recent Studies on Neoechinorhynchus curemai Noronha, 1973 (Acanthocephala: Neoechinorhynchidae), in Prochilodus lineatus Valenciennes, 1836, from Volta Grande Reservoir, MG, Brazil. Revista Brasileira de Biologia 60(4), 673682.CrossRefGoogle Scholar
Miller, TL and Cribb, TH (2008) Family cryptogonimidae ward, 1917. pp. 51112 in Bray, RA, Gibson, DI and Jones, A (Eds) Keys to the Trematoda, Vol 3. Wallingford, CABI.Google Scholar
Moravec, F (1998) Nematoides de peixes de água doce da Região Neotropical [Nematodes of freshwater fish from the Neotropics]. República Tcheca, Academia de Ciencias da República Tcheca. [In Portuguese.]Google Scholar
Negreiros, LP, Pereira, FB, Tavares-Dias, M and Tavares, LER (2018) Community structure of metazoan parasites from Pimelodus blochii in two rivers of the Western Brazilian Amazon: same seasonal traits, but different anthropogenic impacts. Parasitology Research 117(12), 37913798.CrossRefGoogle ScholarPubMed
Negreiros, LP, Florentino, AC, Pereira, FB and Tavares-Dias, M (2019) Long-term temporal variation in the parasite community structure of metazoans of Pimelodus blochii (Pimelodidae), a catfish from the Brazilian Amazon. Parasitology Research 118(12), 33373347.CrossRefGoogle Scholar
Negreiros, LP, Pereira, FB and Tavares-Dias, M (2020) Dadaytrema oxycephala (Digenea: Cladorchiidae) in definitive host Pimelodus blochii (Pisces: Pimelodidae), with morphological and geographic distribution data in fishes from the South America. Journal of Parasitic Diseases 44(1), 6268.CrossRefGoogle Scholar
Negreiros, LP, Neves, LR and Tavares-Dias, M (2021) Parasites in Leporinus macrocephalus (Anostomidae) of four fish farms from the western Amazon (Brazil). Anais Da Academia Brasileira de Ciências 93(3). doi:10.1590/0001-3765202120190988CrossRefGoogle Scholar
Neves, LR, Silva, LMA, Florentino, AC and Tavares-Dias, M (2020) Distribution patterns of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) and its interactions with freshwater fish in Brazil. Revista Brasileira de Parasitologia Veterinária 29(4). doi:10.1590/s1984-29612020092CrossRefGoogle ScholarPubMed
Pacheco, EO, Ceron, K, Akieda, PS and Santana, DJ (2021) Diet and morphometry of two poison frog species (Anura, Dendrobatidae) from the plateaus surrounding the Pantanal of Mato Grosso do Sul state, Brazil. Studies on Neotropical Fauna and Environment 56(2), 99107.CrossRefGoogle Scholar
Pantoja, CS, Scholz, T, Luque, JL and Jones, A (2019) First molecular assessment of the interrelationships of cladorchiid digeneans (Digenea: Paramphistomoidea), parasites of Neotropical fishes, including descriptions of three new species and new host and geographical records. Folia Parasitologica 66(1), 121.CrossRefGoogle Scholar
Pavanelli, GC, Takemoto, RM and Eiras, JC (2013) Parasitologia de peixes de água doce do Brasil [Parasitology of freshwater fish from Brazil]. Maringá, Eduem. [In Portuguese.]Google Scholar
Poulin, R, Presswell, B and Jorge, F (2020) The state of fish parasite discovery and taxonomy: a critical assessment and a look forward. International Journal for Parasitology 50(10-11), 733-742.CrossRefGoogle Scholar
Radujković, B and Šundić, D (2018) Parasites of Lake Skadar. pp. 325337 in V, Pešić, G, Karaman, A, Kostianoy (Eds) The Skadar/Shkodra Lake environment. The Handbook of Environmental Chemistry, V. 80. Cham, Springer.CrossRefGoogle Scholar
R Core Team (2020) R: A language and environment for statistical computing. R version 3.6.1. Vienna, Austria, R Foundation for Statistical Computing. https://www.R-project.org/ (Accessed on 15 Jun 2020).Google Scholar
Reis, MS, Santos, CP, Nunes, JLS and Mugnai, R (2021) Checklist of nematodes parasitizing fish in the Brazilian Amazon. Journal of Helminthology 95(75), 112.Google Scholar
Rengifo, B (2007) Diversidad de peces en la cuenca del Alto Yuruá (Ucayali, Perú) [Diversity of fish in the Alto Yuruá river basin (Ucayali, Peru)]. Revista Peruana de Biología 13(3), 195202. [In Portuguese.]Google Scholar
Saad, CDR, Vieira, FM and Luque, JL (2012) Larvae of Anisakidae Skrjabin & Karokhin, 1945 (Nematoda, Ascaridoidea) in Lophius gastrophysus Miranda-Ribeiro, 1915 (Actinopterygii, Lophiidae) from the coastal zone of the state of Rio de Janeiro, Brazil. Neotropical Helminthology 6(2), 159177.Google Scholar
Scholz, T and Salgado-Maldonado, G (1994) On Genarchella isabellae (Digenea: Derogenidae) from Cichlid and Pimelodid Fishes in Mexico. The Journal of Parasitology 80(6), 10131017.CrossRefGoogle ScholarPubMed
Silva, ALC and Virgilio, LR (2019) The influence of sand extraction on fish assemblages in campinarana streams in cruzeiro do Sul – AC, Brazil. Biotemas 32(3), 7385.CrossRefGoogle Scholar
Silvano, RAM (2001) Peixes do Alto Rio Juruá (Amazonas, Brasil) [Fish from the Upper Juruá River (Amazonas, Brazil)]. São Paulo, EdUSP. [In Portuguese.]Google Scholar
Silvano, RAM (2020) Fish and fisheries in the Brazilian Amazon. Cham, Springer International Publishing.CrossRefGoogle Scholar
Souza, DCdeM, Santos, MCdos and Chagas, EC (2019) Immune response of teleost fish to helminth parasite infection. Revista Brasileira de Parasitologia Veterinária 28(4), 533547.CrossRefGoogle Scholar
Sures, B, Nachev, M, Selbach, C and Marcogliese, DJ (2017) Parasite responses to pollution: what we know and where we go in ‘environmental parasitology’. Parasites & Vectors 10(65), 219.CrossRefGoogle ScholarPubMed
Takemoto, R, Pavanelli, G, Lizama, M and Bellay, S (2009) Diversity of parasites of fish from the upper Paraná River floodplain, Brazil. Brazilian Journal of Biology 69(Suppl 2), 691705.CrossRefGoogle ScholarPubMed
Thatcher, VE (1991) Amazon fish parasites. Amazoniana 11(3–4), 263572.Google Scholar
Thatcher, VE and Dossman, D (1975) Unicoelium prochilodorum n. gen. et n. sp.(Trematoda: Haploporidae) from freshwater fish (Prochilodus reticulatus) in Colombia. Journal of the Helminthological Society of Washington 42(1), 2830.Google Scholar
Torrente-Vilara, G, Queiroz, LD and Ohara, WM (2013) Um breve histórico sobre o conhecimento da fauna de peixes do Rio Madeira. pp. 1945 in LJ, Queiroz, G, Torrente-Vilara, WM, Ohara, THS, Pires, J, Zuanon and CRC, Doria (Eds) Peixes do Rio Madeira. São Paulo, Santo Antônio Energia SA.Google Scholar
Travassos, L (1928) Fauna Helminthologica de Mato Grosso [Helminthological Fauna of Mato Grosso]. Memórias Do Instituto Oswaldo Cruz 21, 309372. [In Portuguese.]CrossRefGoogle Scholar
Travassos, L, Freitas, JF and Kohn, A (1969) Trematódeos do Brazil [Brazil trematodes]. Memorias Do Instituto Oswaldo Cruz 67(1), 1886. [In Portuguese.]Google Scholar
Urabe, M, Ishibashi, R and Uehara, K (2015) The life cycle and molecular phylogeny of a gorgoderid trematode recorded from the mussel Nodularia douglasiae in the Yodo River, Japan. Parasitology International, 64(1), 2632.CrossRefGoogle ScholarPubMed
Ventura, AS, Pádua, SBD, Ishikawa, MM, Martins, ML, Takemoto, RM and Jeronimo, GT (2018) Endoparasites of Gymnotus sp. (Gymnotiformes: Gymnotidae) from commercial baitfish farming in Pantanal basin, Central Brazil. Embrapa Meio Ambiente-Artigo Em Periódico Indexado (ALICE) 44(3), 1–5.Google Scholar
Virgilio, LR, da Silva Lima, F, Massato Takemoto, R, Marcelo Aranha Camargo, L and Ulises de Oliveira Meneguetti, D (2021) Endofauna of helminth parasites of fish in the amazonic basin. South American Journal of Basic Education, Technical and Technological 8(1), 102116.Google Scholar
Wood, CL, Zgliczynski, BJ, Haupt, AJ, Guerra, AS, Micheli, F and Sandin, SA (2018) Human impacts decouple a fundamental ecological relationship – the positive association between host diversity and parasite diversity. Global Change Biology 24(8), 36663679.CrossRefGoogle ScholarPubMed
Yamaguti, S (1970) Digenetic trematodes of Hawaiian fishes, Japan, Tokyo: Keigaku Publishing Co. Ltd.Google Scholar
Supplementary material: File

Virgilio et al. supplementary material

Virgilio et al. supplementary material

Download Virgilio et al. supplementary material(File)
File 90.9 KB