Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T19:59:44.813Z Has data issue: false hasContentIssue false

Effects of amino acid neurotransmitters on spontaneous muscular activity of the rumen amphistome, Gastrothylax crumenifer

Published online by Cambridge University Press:  29 May 2009

P.K. Verma*
Affiliation:
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly243 122, UP, India
D. Kumar
Affiliation:
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly243 122, UP, India
S.K. Tandan
Affiliation:
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly243 122, UP, India
*

Abstract

Amino acid neurotransmitters play an important role in regulating neuromuscular activity of helminth parasites. The present study aimed to investigate the effects of different amino acid neurotransmitters [l-glutamate, glycine, gamma-aminobutyric acid (GABA)] on spontaneous muscular activity of isometrically mounted Gastrothylax crumenifer. l-Glutamate caused a significant increase in the amplitude and frequency of spontaneous contractions of rumen fluke at 10− 7–10− 4 m and at 10− 5–10− 4 m concentrations, respectively. Glycine application (10− 7–10− 3 m) produced a significant decrease in the amplitude and frequency of spontaneous muscular contractions in a concentration-dependent manner, as compared to control amplitude (0.53 ± 0.02 g) and frequency (51 ± 4.65/5 min). Similarly, GABA produced a significant (P < 0.05) decrease in amplitude, baseline tension and frequency of spontaneous muscular contractions of G. crumenifer. To further substantiate the GABA effect, GABAA receptor antagonists, picrotoxin and bicuculline were applied. Picrotoxin (10− 5–10− 3 m) caused a significant (P < 0.05) increase in amplitude, baseline tension and frequency of the rumen fluke as compared to control; whereas bicuculline did not elicit any observable effect in these attributes in isometrically mounted rumen flukes. These observations suggested that l-glutamate has an excitatory, whereas GABA and glycine have an inhibitory, effect on the spontaneous muscular activity of G. crumenifer.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. & Nizami, W.A. (1990) In vitro effect of some anthelmintics on the motility of Gigantocotyle explanatum. Japanese Journal of Parasitology 39, 529534.Google Scholar
Bascal, Z.A., Montgomery, A., Holden-Dye, L., Williams, R.G. & Walker, R.J. (1995) Histochemical mapping of NADPH-diaphorase in the nervous system of parasitic nematode, Ascaris suum. Parasitology 110, 625637.CrossRefGoogle ScholarPubMed
Blair, K.L. & Anderson, P.A.V. (1994) Physiological and pharmacological properties of muscle cells isolated from the flatworm, Bdelloura candida (Tricladia). Parasitology 109, 325335.CrossRefGoogle Scholar
Chappell, L.H. & Walker, E. (1982) Schistosoma mansoni: incorporation and metabolism of protein amino acids in vitro. Comparative Biochemical Physiology 73, 701707.Google ScholarPubMed
Eklove, H. & Webb, R.A. (1991) The effect of L-glutamate and related agents on adenylate cyclase in the cestode Hymenolepis diminuta. Canadian Journal Physiological Pharmacology 69, 2836.CrossRefGoogle ScholarPubMed
Eriksson, K.S. & Panula, P. (1994) Gamma-aminobutyric acid in the nervous system of a planarian. Journal of Comparative Neurology 345, 528536.CrossRefGoogle ScholarPubMed
Eriksson, K.S., Maule, A.G., Halton, D.W., Panula, P.A. & Shaw, C. (1995) GABA in the nervous system of parasitic flatworms. Parasitology 110, 339346.CrossRefGoogle ScholarPubMed
Gimenez-Pardo, C., Ros-Moreno, R.M., De Armas-Serra, C. & Rodriguez-Caabeiro, F. (2000) Detection of acetylcholinesterase activity and gamma-aminobutyric acid binding sites in Dicrocoelium dendriticum. Parasite 7, 237240.CrossRefGoogle ScholarPubMed
Keenan, L. & Koopowitz, H. (1982) Physiology and in situ identification of putative aminergic neurotransmitters in the nervous system of Gyrocotyle fimbriata, a parasitic flatworm. Journal of Neurobiology 13, 921.CrossRefGoogle ScholarPubMed
Keenan, L., Koopowitz, H. & Bernardo, K. (1979) Primitive nervous systems: action of aminergic drugs and blocking agents on activity in the ventral nerve cord of the flatworm Notoplana acticola. Journal of Neurobiology 10, 397407.CrossRefGoogle ScholarPubMed
Martin, R.J. (1987) The gamma-aminobutyric acid receptor of Ascaris as a target for anthelmintics. Biochemical Society Transactions 15, 6165.CrossRefGoogle ScholarPubMed
Martin, R.J. (1996) An electrophysiological preparation of Ascaris suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue, milbemycin D. Parasitology 112, 247252.CrossRefGoogle Scholar
Mellin, T.N., Busch, R.D., Wang, C.C. & Kath, G. (1983) Neuropharmacology of the parasitic trematode Schistosoma mansoni. American Journal of Tropical Medical Hygiene 32, 8393.CrossRefGoogle ScholarPubMed
Mendonca-Silva, D.L., Pessoa, R.F. & Noel, F. (2002) Evidence for the presence of glutamatergic receptors in adult Schistosoma mansoni. Biochemical Pharmacology 64, 13371344.CrossRefGoogle ScholarPubMed
Mendonca-Silva, D.L., Gardino, P.F., Kubrusly, R.C., De Mello, F.G. & Noel, F. (2004) Characterization of a GABAergic neurotransmission in adult Schistosoma mansoni. Parasitology 129, 137146.CrossRefGoogle ScholarPubMed
Miller, C.L., Day, T.A., Bennett, J.L. & Pax, R.A. (1996) Schistosoma mansoni: L-glutamate-induced contractions in isolated muscle fibres, evidence for a glutamate transporter. Experimental Parasitology 84, 410419.CrossRefGoogle ScholarPubMed
Prasad, A. & Varma, T.K. (1999) On the prevalence and community dominance among paramphistomes infecting domestic ruminants. Journal of Veterinary Parasitology 13, 129133.Google Scholar
Shyu, L.Y., Terada, M. & Lee, H.H. (1998) In vitro effects of various neuropharmacological agents on the motility of adult Clonorchis sinensis. Kaohsiung Journal Medical Science 14, 473479.Google ScholarPubMed
Snedecor, G.W. & Cochran, W.J. (1989) Statistical methods. 61 pp. Bombay, Oxford IBH Co.Google Scholar
Terada, M., Ishii, A.I., Kino, H. & Sano, M. (1982) Studies on chemotherapy of parasitic helminths (VI) effects of various neuropharmacological agents on the motility of Dipylidium caninum. Japanese Journal of Pharmacology 32, 479488.CrossRefGoogle ScholarPubMed
Verma, P.K., Kumar, D., Tandan, S.K. & Raina, R. (2007) Effect of Tryptaminergic system in regulating the motility of Gastrothylax crumenifer. Journal of Veterinary Parasitology 21, 157160.Google Scholar
Verma, P.K., Kumar, D. & Tandan, S.K. (2009) Functional role of cholinergic drugs on spontaneous muscular activity of Gastrothylax crumenifer – an amphistome from ruminants. Journal of Helminthology 83, 7782.CrossRefGoogle ScholarPubMed
von Samson-Himmelstjerna, G. & Blackhall, W. (2005) Will technology provide solutions for drug resistance in veterinary helminths? Veterinary Parasitology 132, 223239.CrossRefGoogle ScholarPubMed
Webb, R.A. (1986) The uptake and metabolism of L-glutamate by tissue slices of the cestode Hymenolepis diminuta. Comparative Biochemical Physiology 85, 151162.Google ScholarPubMed
Webb, R.A. (1988) Release of exogenously supplied [3H]glutamate and endogenous glutamate from tissue slices of the cestode Hymenolepis diminuta. Canadian Journal of Physiological Pharmacology 66, 889894.CrossRefGoogle ScholarPubMed
Webb, R.A. & Eklove, H. (1989) Demonstration of intense glutamate-like immunoreactivity in the longitudinal nerve cords of the cestode Hymenolepis diminuta. Parasitological Research 75, 545548.CrossRefGoogle ScholarPubMed