Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T12:51:06.846Z Has data issue: false hasContentIssue false

The effect of an indirect anthelmintic treatment on parasites and breeding success of free-living pheasants Phasianus colchicus

Published online by Cambridge University Press:  12 April 2024

R.A.H. Draycott*
Affiliation:
The Game Conservancy Trust, Fordingbridge, Hampshire, SP6 1EF, UK
M.I.A. Woodburn
Affiliation:
The Game Conservancy Trust, Fordingbridge, Hampshire, SP6 1EF, UK
D.E. Ling
Affiliation:
The Game Conservancy Trust, Fordingbridge, Hampshire, SP6 1EF, UK
R.B. Sage
Affiliation:
The Game Conservancy Trust, Fordingbridge, Hampshire, SP6 1EF, UK
*
*Corresponding author: Fax: +44 (0)1440 821325, Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Great Britain free-living common pheasants Phasianus colchicus are often managed at high densities owing to their popularity as a quarry species. They are prone to infection by a range of parasite species including Heterakis gallinarum, Capillaria spp. and Syngamus trachea. In 1995 the efficacy of an indirect anthelmintic technique for controlling parasitic worm burdens of pheasants was determined in a pilot study on a shooting estate in the south of England. Between 2000 and 2003 a large-scale field experiment was conducted on nine estates in eastern England to determine the effect of the technique on parasite burden and pheasant breeding success. In the absence of anthelmintic treatment worm burdens increased rapidly through March and April, whereas birds given anthelmintic-treated grain had lower worm burdens during the same period. The breeding success of pheasants was significantly higher on plots provided with anthelmintic treatment, although no long-term increases in population densities were observed. The burdens of the most common parasite H. gallinarum were significantly lower in pheasants from treatment plots six weeks after the anthelmintic treatment had ceased, but spring treatment did not influence parasite burden in the following winter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Aebischer, N.J. (2003) The national game bag census: recent trends and the effect of foot and mouth disease. The Game Conservancy Trust Review of 2002 34, 6165.Google Scholar
Alexander, J. & Simson, W.H. (1988) Sex hormones and the course of parasitic infection. Parasitology Today 4, 189193.CrossRefGoogle Scholar
Beer, J.V. (1988) Diseases of gamebirds and wildfowl. Advisory Green Guide 6, Hampshire, The Game Conservancy Trust.Google Scholar
Campbell, L.H., Avery, M.I., Donald, P., Evans, A.D., Green, R.E. & Wilson, J.D. (1997) A review of the indirect effect of pesticides on birds. JNCC Report no. 227.Joint Nature Conservation Committee,Peterborough, UK.Google Scholar
Carroll, J.P., Robertson, P.A. & Draycott, R.A.H. (1997) Flight characteristics, hunter selection and morphometrics of reared pheasants ( Phasianus colchicus ) in England. Game and Wildlife Science 14, 601614.Google Scholar
Clapham, P.A. (1934) Experimental studies on the transmission of gapeworm ( Syngamus trachea ) by earthworms. Proceedings of the Royal Society 115, 1830.Google Scholar
Clapham, P.A. (1950) On sterilising land against poultry parasites. Journal of Helminthology 24, 137144.CrossRefGoogle Scholar
Doster, G.L. & Goater, C.P. (1997) Collection and quantification of avian helminths and protozoa. pp. 396418 in Clayton, D.H. & Moore, J. (Eds) Host parasite evolution – general principles and avian models. Oxford, Oxford University Press.CrossRefGoogle Scholar
Draycott, R.A.H. (2006) The status and breeding success of managed wild pheasant populations in eastern England. International Symposium on Managing partridges and other game in the agricultural landscape. Udine, Italy, October 2003, in press.Google Scholar
Draycott, R.A.H., Hoodless, A.N., Ludiman, M.N. & Robertson, P.A. (1998) Effects of spring feeding on body condition of captive-reared ring-necked pheasants in Great Britain. Journal of Wildlife Management 62, 557563.CrossRefGoogle Scholar
Draycott, R.A.H., Parish, D.M.B., Woodburn, M.I.A. & Carroll, J.P. (2000) Spring survey of the parasite Heterakis gallinarum in wild living pheasants in Britain. Veterinary Record 147, 245246.CrossRefGoogle ScholarPubMed
Draycott, R.A.H., Parish, D.M.B., Woodburn, M.I.A. & Carroll, J.P. (2002) Spring body condition of hen pheasants Phasianus colchicus in Great Britain. Wildlife Biology 8, 261266.CrossRefGoogle Scholar
Draycott, R.A.H., Woodburn, M.I.A., Carroll, J.P. & Sage, R.B. (2005) Effects of spring supplementary feeding on population density and breeding success of released pheasants in Britain. Wildlife Biology 11, 177182.CrossRefGoogle Scholar
Hill, D.A. & Robertson, P.A. (1988) Breeding success of wild and captive-reared ring-necked pheasants. Journal of Wildlife Management 52, 446450.CrossRefGoogle Scholar
Hillgarth, N. & Wingfield, J.C. (1997) Parasite-mediated sexual selection: endocrine aspects. pp. 78104 in Clayton, D.H. & Moore, J. (Eds) Host parasite evolution – general principles and avian models Oxford, Oxford University Press.CrossRefGoogle Scholar
Hoodless, A.N., Draycott, R.A.H., Ludiman, M.N. & Robertson, P.A. (1999) Effects of supplementary feeding on territoriality, breeding success and survival of pheasants. Journal of Applied Ecology 36, 147156.CrossRefGoogle Scholar
Hudson, P.J., Newborn, D. & Dobson, A.P. (1992) Regulation and stability of a free living host – parasite system: Trichostrongylus tenuis in red grouse. I. Monitoring and parasite reduction experiments. Journal of Animal Ecology 61, 477486.CrossRefGoogle Scholar
Leif, A.P. (1994) Survival and reproduction of wild and pen reared ring-necked pheasant hens. Journal of Wildlife Management 58, 501506.CrossRefGoogle Scholar
Lund, E.E. (1960) Factors influencing the survival of Heterakis and Histomonas on soil. Journal of Parasitology 46, 38.Google Scholar
Lund, E.E. (1967) Acquired resistance to experimental Heterakis infections in chickens and turkeys: effect on transmission of Histomonas meleagridis. Journal of Helminthology 41, 5562.CrossRefGoogle Scholar
Lund, E.E. & Chute, A.M. (1974) The reproductive potential of Heterakis gallinarum in various species of galliform birds: implications for survival of H. gallinarum and Histomonas meleagridis to recent times. International Journal for Parasitology 4, 455461.CrossRefGoogle ScholarPubMed
Millín, J., Gortízar, C., Tizzani, P. & Buenestado, F.J. (2002) Do helminths increase the vulnerability of released pheasants to fox predation?. Journal of Helminthology 76, 225229.CrossRefGoogle Scholar
Newborn, D. & Foster, R. (2002) Control of parasite burdens in wild red grouse Lagopus lagopus scoticus through the indirect application of anthelmintics. Journal of Applied Ecology 39, 909914.CrossRefGoogle Scholar
Potts, G.R. (1980) The effects of modern agriculture, nest predation and game management on the population ecology of partridges ( Perdix perdix and Alectoris rufa ). Advances in Ecological Research 11, 182.CrossRefGoogle Scholar
Robertson, P.A. & Hillgarth, N. (1993) Impact of a parasite Heterakis gallinarum on the body condition and breeding success of pheasants Phasianus colchicus. pp. 7782 in Thompson, I.D. (Ed.) Proceedings of the International Union of Game Biologists 21st Congress. Vol. 2. Canadian Forest Service, Halifax, Nova Scotia.Google Scholar
Robertson, P.A., Woodburn, M.I.A., Neutel, W. & Bealey, C.E. (1993) Effects of land-use on breeding pheasant density. Journal of Applied Ecology 30, 465477.CrossRefGoogle Scholar
Sage, R.B., Ludolf, C. & Robertson, P.A. (2005) The ground flora of ancient semi-natural woodlands in pheasant release pens in England. Biological Conservation 122, 243252.CrossRefGoogle Scholar
Soulsby, E.J.L. (1982) Helminths, arthropods and protozoa of domesticated animals. 7th edn. 809 pp. London, Tindall.Google Scholar
SPSS Inc, (1999) Systat 9. SPSS Inc. Illinois, USA.Google Scholar
Tapper, S.C. (1999) A question of balance: game animals and their role in the British countryside. 288 pp. The Game Conservancy Trust, Hampshire UK.Google Scholar
Tompkins, D.M. & Hudson, P.J. (1999) Regulation of nematode fecundity in the ring-necked pheasant ( Phasianus colchicus ): not just density dependence. Parasitology 118, 417423.CrossRefGoogle Scholar
Tompkins, D.M., Dickson, G. & Hudson, P.J. (1999) Parasite-mediated competition between pheasant and grey partridge: a preliminary investigation. Oecologica 119, 378382.CrossRefGoogle Scholar
Tompkins, D.M., Draycott, R.A.H. & Hudson, P.J. (2000) Field evidence for apparent competition mediated via the shared parasites of two gamebird species. Ecology Letters 3, 1014.CrossRefGoogle Scholar
Turner, C. & Sage, R. (2004) Fate of released pheasants. The Game Conservancy Trust Review of 2003 35, 7475.Google Scholar
Woodburn, M.I.A. (1999) Comparative population dynamics of wild and reared pheasants. Unpublished PhD thesis, University of Southampton, UK.Google Scholar
Aalberse, R. (2000) Specific IgE and IgG responses in atopic versus non-atopic subjects. American Journal of Respiratory and Critical Care Medicine 162, 51245127.CrossRefGoogle Scholar
Addiss, D.G., Dimock, K.A., Eberhard, M.L. & Lammie, P.J. (1995) Clinical, parasitologic, and immunologic observations of patients with hydrocele and elephantiasis in an area with endemic lymphatic filariasis. Journal of Infectious Diseases 171, 755758.CrossRefGoogle Scholar
Beaver, P.C. (1956) Larva migrans. Experimental Parasitology 5, 587621.CrossRefGoogle ScholarPubMed
Bowman, D.D., Mika-Grieve, M. & Grieve, R.B. (1987) Circulating excretory antigens levels and specific antibody responses in mice infected with Toxocara canis. American Journal of Tropical Medicine and Hygiene 36, 7582.CrossRefGoogle ScholarPubMed
Brinkman, V. & Heusser, C.H. (1993) T-cell dependent differentiation phenomenon of human B cells into IgM, IgG, IgA, or IgE plasma cells: high rate of antibody production by IgE plasma cells, but limited IgE expression of IgE precursors. Cellular Immunology 152, 323332.CrossRefGoogle Scholar
Buijs, J., Borsboom, G., van Gemund, J.J., Hazebroek, A., van Dongen, P.A., van Knapen, F. & Neijens, H.J. (1994) Toxocara seroprevalence in 5-year-old elementary schoolchildren: relation with allergic asthma. American Journal of Epidemiology 140, 839847.CrossRefGoogle ScholarPubMed
Capron, M. & Capron, A. (1992) Effector functions of eosinophils in schistosomiasis. Memorias do Instituto Oswaldo Cruz 87, Suppl 4, 167170.CrossRefGoogle ScholarPubMed
Daeki, A.O., Craig, P.S. & Shambesh, M.K. (2000) IgG-subclass antibody responses and the natural history of hepatic cystic echinococcosis in asymptomatic patients. Annals of Tropical Medicine and Parasitology 94, 319328.CrossRefGoogle ScholarPubMed
De Savigny, D.H. (1975) In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigens for use in serodiagnostic tests for visceral larva migrans. Journal of Parasitology 61, 781782.CrossRefGoogle Scholar
Fujisawa, T., Terada, A., Atsuta, J., Iguchi, K., Kamiya, H. & Sakurai, M. (1998) Clinical utility of serum levels of eosinophil cationic protein (ECP) for monitoring and predicting clinical course in childhood asthma. Clinical and Experimental Allergy 28, 1925.CrossRefGoogle ScholarPubMed
Genchi, C., Falagiani, P., Riva, G., Tinelli, M., Brunello, F., Boero, M. & Almaviva, M. (1988) IgE and IgG antibodies in Toxocara canis infection. A clinical evaluation. Annals of Allergy 61, 4346.Google ScholarPubMed
Glickman, L.T., Magnaval, J.-F., Domanski, L.M., Shofer, F.S., Lauria, S.S., Gottstein, B. & Brochier, B. (1987) Visceral larva migrans in French adults. A new disease syndrome?. American Journal of Epidemiology 125, 10191033.CrossRefGoogle ScholarPubMed
Hill, I.R., Denham, D.A. & Scholtz, C.L. (1985) Toxocara canis larvae in the brain of a British child. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 351354.CrossRefGoogle ScholarPubMed
Kaplan, K.J., Goodman, Z.D. & Ishak, K.G. (2001) Eosinophilic granuloma of the liver: a characteristic lesion with relationship to visceral larva migrans. American Journal of Surgical Pathology 25, 13161321.CrossRefGoogle ScholarPubMed
Kayes, S.G. (1997) Human toxocariasis and the visceral larva migrans syndrome: correlative immunopathology. Chemical Immunology 66, 99124.Google ScholarPubMed
Kayes, S.G. & Oaks, J.A. (1978) Development of the granulomatous response in murine toxocariasis. Initial events. American Journal of Pathology 93, 277294.Google ScholarPubMed
Kurniawan, A., Yazdanbakhsh, M., van Ree, R., Aalberse, R., Selkirk, M.E., Partono, F. & Maizels, R.M. (1993) Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. Journal of Immunology 150, 39413950.CrossRefGoogle ScholarPubMed
Li, Y., Sleigh, A.C., Ross, A.G., Li, Y., Zhang, X., Williams, G.M., Yu, X., Tanner, M. & McManus, D.P. (2001) Human susceptibility to Schistosoma japonicum in China correlates with antibody isotypes to native antigens. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 441448.CrossRefGoogle Scholar
Magnaval, J.-F. (1995) Comparative efficacy of diethy lcarbamazine and mebendazole for the treatment of human toxocariasis. Parasitology 110, 529533.CrossRefGoogle Scholar
Magnaval, J.-F., Baixench, M.-T. (1993) Toxocariasis in Région Midi-Pyrénées, France. pp. 8387 in Lewis, J.W. & Maizels, R.D. (Eds) Toxocara and toxocariasis. Clinical, epidemiological, and molecular perspectives. London: Institute of Biology and British Society for Parasitology.Google Scholar
Magnaval, J.-F., Fabre, R., Maurieres, P., Charlet, J.-P. & De Larrard, B. (1991) Application of the western-blotting procedure for the immunodiagnosis of human toxocariasis. Parasitology Research 77, 697702.CrossRefGoogle ScholarPubMed
Magnaval, J.-F., Fabre, R., Maurieres, P., Charlet, J.-P. & De Larrard, B. (1992) Evaluation of an immunoenzymatic assay detecting specific anti- Toxocara immunoglobulin E for diagnosis and post-treatment follow-up of human toxocariasis. Journal of Clinical Microbiology 30, 22692274.CrossRefGoogle Scholar
Magnaval, J.-F., Berry, A., Fabre, R. & Morassin, B. (2001a) Eosinophil cationic protein as a possible marker of active human Toxocara infection. Allergy 56, 10961099.CrossRefGoogle ScholarPubMed
Magnaval, J.-F., Glickman, L.T., Dorchies, P. & Morassin, B. (2001b) Highlights of human toxocariasis. Korean Journal of Parasitology 39, 111.CrossRefGoogle ScholarPubMed
Maizels, R.M. & Page, A.P. (1990) Surface associated glycoproteins from Toxocara canis larval parasites. Acta Tropica 47, 355364.CrossRefGoogle ScholarPubMed
Meeusen, E.N. (1999) Immunology of helminth infections, with special reference to immunopathology. Veterinary Parasitology 84, 259273.CrossRefGoogle ScholarPubMed
Moffatt, M.F. & Cookson, W.O. (1998) Gene identification in asthma and allergy. International Archives of Allergy and Immunology 116, 247252.CrossRefGoogle ScholarPubMed
Motojima, S., Tateishi, K., Koseki, T., Makino, S. & Fukuda, T. (1997) Serum levels of eosinophil cationic protein and IL-5 in patients with asthma without systemic corticosteroids. International Archives of Allergy and Immunology 114, 5559.CrossRefGoogle ScholarPubMed
Nagakura, K., Kanno, S., Tachibana, H., Kaneda, Y., Ohkido, M., Kondo, K. & Inoue, H. (1990) Serologic differentiation between Toxocara canis and Toxocara cati. Journal of Infectious Diseases 162, 14181419.CrossRefGoogle ScholarPubMed
Noordin, R., Smith, H.V., Mohamad, S., Maizels, R.M. & Fon, M.F. (2005) Comparison of IgG-ELISA and IgG4-ELISA for Toxocara serodiagnosis. Acta Tropica 93, 5762.CrossRefGoogle ScholarPubMed
Nutten, S., Trottein, F., Gounni, A.S., Papin, J.P., Capron, A. & Capron, M. (1997) From allergy to schistosomes: role of Fc receptors and adhesion molecules in eosinophil effector function. Memórias do Instituto Oswaldo Cruz 92, Suppl 2, 914.CrossRefGoogle ScholarPubMed
Obwaller, A., Jensen-Jarolim, E., Auer, H., Huber, A., Kraft, D. & Aspock, H. (1998) Toxocara infestations in humans: symptomatic course of toxocarosis correlates significantly with levels of IgE/anti-IgE immune complexes. Parasite Immunology 20, 311317.CrossRefGoogle ScholarPubMed
Parsons, J.C. & Grieve, R.B. (1990) Effect of egg dosage and host genotype on liver trapping in murine larval toxocariasis. Journal of Parasitology 76, 5358.CrossRefGoogle ScholarPubMed
Simmons, A., Leaverton, P. & Elbert, G. (1974) Normal laboratory values for differential white cell counts established by manual and automated cytochemical methods (Hemalog D™). Journal of Clinical Pathology 27, 5558.CrossRefGoogle ScholarPubMed
Simonsen, P.E. & Meyrowitsch, D.W. (1998) Bancroftian filariasis in Tanzania: specific antibody responses in relation to long-term observations on microfilaremia. American Journal of Tropical Medicine and Hygiene 59, 667672.CrossRefGoogle ScholarPubMed
Smith, H.V., Kusel, J.R. & Girdwood, R.W. (1983) The production of human A and B blood group like substances by in vitro maintained second stage Toxocara canis larvae: their presence on the outer larval surfaces and in their excretions/secretions. Clinical and Experimental Immunology 54, 625633.Google Scholar
Soulsby, E.J.L. (1987) Larva migrans in perspective. pp. 3748 in Geerts, S., Kumar, V. & Brandt, J. (Eds) Helminth zoonoses., Dordrecht, Martinus Nijhoff.Google Scholar
Sugane, K., Kusama, Y., Takamoto, M., Tominaga, A. & Takatsu, K. (1996) Eosinophilia, IL-5 level and recovery of larvae in IL-5 transgenic mice infected with Toxocara canis. Journal of Helminthology 70, 153158.CrossRefGoogle ScholarPubMed
Taylor, M., Keane, C., O'Connor, P., Mulvihill, E. & Holland, C. (1988) The expanded spectrum of toxocaral disease. Lancet i, 692695.CrossRefGoogle Scholar
Tischendorf, F.W., Brattig, N.W., Lintzel, M., Buttner, D.W., Burchard, G.D., Bork, K. & Muller, M. (2000) Eosinophil granule proteins in serum and urine of patients with helminth infections and atopic dermatitis. Tropical Medicine and International Health 5, 898905.CrossRefGoogle ScholarPubMed
Tomassini, M., Magrini, L., De Petrillo, G., Adriani, E., Bonini, S., Balsano, F. & Bonini, S. (1996) Serum levels of eosinophil cationic protein in allergic diseases and natural allergen exposure. Journal of Allergy and Clinical Immunology 97, 13501355.CrossRefGoogle ScholarPubMed
Werner, J.C., Ross, R.D., Green, W.R. & Watts, J.C. (1999) Pars plana vitrectomy and subretinal surgery for ocular toxocariasis. Archives of Ophthalmology 117, 532534.CrossRefGoogle ScholarPubMed
Yahiro, S., Cain, G. & Butler, J.E. (1998) Identification, characterization and expression of Toxocara canis nematode polyprotein allergen TBA-1. Parasite Immunology 20, 351357.CrossRefGoogle ScholarPubMed
Baylis, H.A. (1925a) On the species of Gongylonema (Nematoda) parasitic in ruminants. Journal of Comparative Pathology and Therapy 38, 4655.CrossRefGoogle Scholar
Baylis, H.A. (1925b) On Gongylonema collected in Italy during October 1924, with some observations on the genus. Journal of Tropical Medicine and Hygiene 28, 7176.Google Scholar
Beaver, P.C., Jung, R.C. & Cupp, E.W. (1984) Clinical parasitology. 9th edn. 825 pp. Philadelphia, Lea & Febiger.Google Scholar
Dismuke, J.C. & Routh, C.F. (1963) Human infection with Gongylonema in Georgia. American Journal of Tropical Medicine and Hygiene 12, 7374.CrossRefGoogle Scholar
Eberhard, M.L. & Busillo, C. (1999) Human Gongylonema infection in a resident of New York City. American Journal of Tropical Medicine and Hygiene 61, 5152.CrossRefGoogle Scholar
Eslami, A. & Farokhzadegan, F. (1972) Les nematodes du tube digestif des bovines en Iran. Revue d'Élevage et de Médicine Vétérinaire des Pays Tropicaux 25, 527529.Google Scholar
Eslami, A. & Nabavi, M. (1976) Species of gastrointestinal nematodes of sheep from Iran. Bulletin de la Socieété de Pahtologie Exotique 69, 9295.Google ScholarPubMed
Garin, Y., Languillat, G., Beauvais, B., Tursz, A. & Lariviere, M. (1978) Le parasitism intestinal au Gabon oriental. Bulletin de la Société de Pathologie Exotique 71, 157164.Google Scholar
Gutierrez, Y. (2000) The diagnostic pathology of parasitic infections with clinical correlations. 2nd edn. 769 pp. New York, Oxford University Press.Google Scholar
Jelinek, T. & Loscher, T. (1994) Human infection with Gongylonema pulchrum: a case report. Tropical Medicine and Parasitology 45, 329330.Google ScholarPubMed
Kudo, N., Kuratomi, K., Hatada, N., Ikadai, H. & Oyamada, T. (2005) Further observations on the development of Gongylonema pulchrum in rabbits. Journal of Parasitology 95, 750755.CrossRefGoogle Scholar
Lichtenfels, J.R. (1971) Morphologic variation in the gullet nematode, Gongylonema pulchrum Molin. 1857, from eight species of definitive hosts with a consideration of Gongylonema from Macaca spp. Journal of Parasitology 57, 348355.CrossRefGoogle ScholarPubMed
Wilde, H., Suankratay, C., Thongkam, C. & Chaiyabutr, N. (2001) Human Gongylonema in Southeast Asia. Journal of Travel Medicine 8, 204206.CrossRefGoogle ScholarPubMed
Wilson, M.E., Lorente, C.A., Allen, J.E. & Eberhard, M.L. (2001) Gongylonema infection in the mouth in a resident of Cambridge, Massachusetts. Clinical Infectious Diseases 32, 13781380.CrossRefGoogle Scholar