Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T19:52:26.876Z Has data issue: false hasContentIssue false

Dung-derived biological agents associated with reduced numbers of infective larvae of equine strongyles in faecal cultures

Published online by Cambridge University Press:  05 June 2009

J. Bird
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark
M. Larsen
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark
P. Nansen
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark
H.O. Kraglund
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark Section of Zoology, Department of Ecology and Molecular Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
J. Grønvold
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark Section of Zoology, Department of Ecology and Molecular Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
S.A. Henriksen
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark Danish Veterinary Laboratory, 27 Bülowsvej, DK-1790 Copenhagen V, Denmark
J. Wolstrup
Affiliation:
Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, 13 Bülowsvej, DK-1870 Frederiksberg C, Denmark Danish Veterinary Laboratory, 27 Bülowsvej, DK-1790 Copenhagen V, Denmark

Abstract

Two sets of dung-derived organisms from soil routinely fertilized with manure (MA) and soil chemically fertilized (CH) were cultured separately in the laboratory. Baermannized organisms from these cultures were added to 20 g of faeces from strongyle-infected horses to form three treatment groups: (i) no soil organisms; (ii) low inoculum of soil organisms containing all organisms present in a suspension of approximately 100 adult female free-living nematodes; and (iii) high inoculum containing those soil organisms present with approximately 1000 adult female free-living nematodes. Three studies were conducted using MA cultures and faeces containing 50 strongyle epg, CH cultures and faeces containing 1500 strongyle epg, and a mixture of soil organisms from the two cultures (MC) and faeces containing 600 strongyle epg. Within each study, five control cultures and 15 each of low and high inoculum cultures were prepared and incubated at 24°C and 95% humidity in a climate chamber for 15 days. Parasitic and free-living nematodes were then recovered by the Baermann technique and counted. The numbers of third stage larvae were significantly lower in the high inoculum group compared to controls. The percent reductions in the number of third stage larvae for the low and high inoculum groups were 63.6% and 90.9%, 85.1% and 97.1%, 84.5% and 98.4% for MA, CH, and MC studies, respectively, indicating that mortality increased with the number of soil organisms added to cultures. Examination of the source cultures detected the presence of two species of nematophagous fungi and three genera of free-living nematodes reported to be predacious.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, J. & Herd, R.P. (1995) In vitro assessment of two species of nematophagous fungi (Arthrobotrys oligospora and Arthrobotrys flagrans) to control the development of infective cyathostome larvae from naturally infected horses. Veterinary Parasitology 56, 181187.CrossRefGoogle ScholarPubMed
Bjørn, H. (1994) Workshop summary: anthelmintic resistance. Veterinary Parasitology 54, 321325.CrossRefGoogle ScholarPubMed
Bongers, T. (1994) De nematoden van Nederland. Utrecht, Koninklijke Nederlandse Natuurhistorische Vereniging, 408 pp.Google Scholar
Bovien, P. (1937) Some types of association between nematodes and insects. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening 101, 1114.Google Scholar
Bowman, D.D. (1995) Georgi's parasitology for veterinarians. 430 pp. Philadelphia, Saunders & Company.Google Scholar
Charles, T.P., Roque, M.V.C., Santos, C. & de, P. (1996) Reduction of Haemonchus contortus infective larvae by Harposporium anguillulae in sheep faecal cultures. International Journal for Parasitology 26, 509510.CrossRefGoogle ScholarPubMed
Cooke, R.C. & Godfrey, B.E.S. (1964) A key to the nematode destroying fungi. Transactions of the British Mycological Society 47, 6174.CrossRefGoogle Scholar
Craig, T. (1993) Anthelmintic resistance. Veterinary Parasitology 46, 121131.CrossRefGoogle ScholarPubMed
Goodey, T. (1963) Soil and freshwater nematodes. 2nd edn (rewritten by J.B. Goodey), 544 pp. London, Methuen Co LtdNew York, John Wiley & Sons, Inc.Google Scholar
Gray, N.E (1988) Fungi attacking vermiform nematodes. pp. 338 in Poinar, G.O. & Jansson, H.B. (Eds) Diseases of nematodes. Volume 2. Boca Raton, CRC Press.Google Scholar
Grønvold, J., Wolstrup, J., Henriksen, S.A. & Nansen, P. (1987) Field experiments on the ability of Arthrobotrys oligospora (Hyphomycetales) to reduce the number of Cooperia oncophora (Trichostrongylidae). Journal of Hel minthology 61, 6571.Google ScholarPubMed
Grønvold, J., Nansen, P., Henriksen, S.A., Thylin, J. & Wolstrup, J. (1988) The capability of the predacious fungus Arthrobotrys oligospora (Hyphomycetales) to reduce the number of infective larvae of Ostertagia ostertagi (Trichostrongylidae) in cow pats and herbage during the grazing season in Denmark. Journal of Helminthology 62, 271280.CrossRefGoogle ScholarPubMed
Grønvold, J., Henriksen, S.A., Nansen, P., Wolstrup, J. & Thylin, J. (1989) Attempts to control infection with Ostertagia ostertagi (Trichostrongylidae) in grazing calves by adding mycelium of the nematode-trapping fungus Arthrobotrys oligospora (Hyphomycetales) to cow pats. Journal of Helminthology 63, 115126.CrossRefGoogle Scholar
Grønvold, J., Wolstrup, J., Larsen, M., Henriksen, S.A. & Nansen, P. (1993) Biological control of Ostertagia ostertagi by feeding selected nematodetrapping fungi to calves. Journal of Helminthology 67, 3136.CrossRefGoogle ScholarPubMed
Gruner, L.M., Peloille, M., Sauve, C. & Cortet, J. (1985) Parasitologie animale. Survie et conservation de l'activité predatrice visavis de nematodes trichostrongylides aprs ingestion par des ovins de trois hyphomycetes predateurs. Comple Rendu de l'Académie des Sciences Pari s III 300, 525528.Google Scholar
Hashmi, H.A. & Connan, R.M. (1989) Biological control of ruminant trichostrongylids by Arthrobotrys oligospora, a predacious fungus. Parasitology Today 5, 2830.CrossRefGoogle ScholarPubMed
Hechler, H.C. (1963) Description, developmental biology and feeding habits of Seinura tenuicaudata (DeMan) J.B. Goodey 1960 (Nematoda: Aphelenchoididae), a nematode predator. Proceedings of the Helminthological Society of Washington 30, 182195.Google Scholar
Hechler, H.C. & Taylor, D.P. (1966) The life histories of Seinura celeries, S. oliveira, S. oxura and S. steineri (Nematoda: Aphelenchoididae). Proceedings of the Helminthological Society of Washington 33, 7183.Google Scholar
Herd, R.P. (1995) Endectocidal drugs: ecological risks and countermeasures. International Journal for Parasitology 25, 875885.CrossRefGoogle ScholarPubMed
Larsen, M., Wolstrup, J., Henriksen, S.A., Gronvold, J. & Nansen, P. (1992) In vivo passage through calves of nematophagous fungi selected for biocontrol of parasitic nematodes in ruminants. Journal of Helrninthology 65, 137141.CrossRefGoogle Scholar
Larsen, M., Nansen, P., Henriksen, S.A., Wolstrup, J., Grnvold, J., Zorn, A. & Wedo, E. (1995a) Predacious activity of the nematodetrapping fungus Duddingtonia flagrans against cyathostome larvae in faeces after passage through the gastrointestinal tract of horses. Veterinary Parasitology 60, 315320.CrossRefGoogle ScholarPubMed
Larsen, M., Nansen, P., Wolstrup, J., Grnvold, J., Henriksen, S.A. & Zorn, A. (1995b) Biological control of trichostrongylosis in grazing calves by means of the fungus Duddingtonia flagrans. Veterinary Parasitology 60, 321330.CrossRefGoogle Scholar
Larsen, M., Nansen, P., Grondahl, C., Thamsborg, S.M., Grnvold, J., Wolstrup, J., Henriksen, S.A. & Monrad, J. (1996) The capacity of the fungus Duddingtonia flagrans to prevent strongyle infections in foals on pasture. Parasitology 113, 16.CrossRefGoogle ScholarPubMed
MendozadeGives, P., ZavaletaMejia, E., QuirozRomero, H., HerreraRodriguez, & PerdomoRoldan, F. (1992) Interaction between the nematode-destroying fungus Arthrobotrys robusta (Hyphomycetales) and Haernonchus contortus infective larvae in vitro. Veterinary Parasitology 41, 101107.CrossRefGoogle Scholar
Nansen, P., Grnvold, J., Henriksen, S.A. & Wolstrup, J. (1988) Interactions between the predacious fungus Arthrobotrys oligospora and thirdstage larvae of a series of animal parasitic nematodes. Veterinary Parasitology 26, 329337.CrossRefGoogle ScholarPubMed
NordbringHertz, B. (1977) Nematodeinduced morphogenesis in the predacious fungus Arthrobotrys oligospora. Nematologica 23, 443451.CrossRefGoogle Scholar
Pandey, V.S. (1973) Predatory activity of nematode trapping fungi against the larvae of Trichostrongylus axei and Ostertagia ostertagi: a possible method of biological control. Journal of Helminthology 47, 3548.CrossRefGoogle ScholarPubMed
Rosner, B. (1990) Fundamentals of biostatistics. 3rd edn, 655 pp. Boston, PWSKent Publishing Company.Google Scholar
Small, R.W. (1987) A review of the prey of predatory soil nematodes. Pedobiologia 30, 179206.Google Scholar
Small, R.W. (1988) Invertebrate predators. pp. 7392 in Poinar, G.O. & Jansson, H.B. (Eds) Diseases of nernatodes. Volume 2. Boca Raton, CRC Press.Google Scholar
Sudhaus, W. (1981) ber die Sukzession von Nematoden in Kuhfladen. Pedobiologia 21, 271297.CrossRefGoogle Scholar
Waller, P. & Faedo, M. (1993) The potential of nematophagous fungi to control the freeliving stages of nematode parasites of sheep: screening studies. Veterinary Parasitology 49, 285297.CrossRefGoogle ScholarPubMed
Wolstrup, J., Grnvold, J., Henriksen, S.A., Nansen, P., Larsen, M., Bgh, H.O. & Ilsoe, B. (1994). An attempt to implement the nematode-trapping fungus Duddingtonia fiagrans in biological control of freeliving stages of trichostrongyles in first year grazing calves. Journal of Helrninthology 68, 175180.CrossRefGoogle Scholar
Yeates, G.W. (1969) Predation by Mononchoides potohikus (Nematoda: Diplogasteridae) in laboratory culture. Nematologica 15, 19.CrossRefGoogle Scholar
Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W. & Georgieva, S.S. (1993) Feeding habits in soil nematode families and genera an outline for soil ecologists. Journal of Nematology 25, 315331.Google ScholarPubMed