Article contents
Digestion of invertebrate neuropeptides by preparations from the free-living nematode Panagrellus redivivus
Published online by Cambridge University Press: 01 September 2008
Abstract
Proteases in the soluble fraction of homogenates prepared from the free-living nematode Panagrellus redivivus hydrolysed the amidated invertebrate neuropeptides FMRFa and FLRFa, and nematode FMRFa-like peptides (FLPs) KPNFLRFa (FLP-1-H), APKPKFIRFa (FLP-5-A), KNEFIRFa (FLP-8), KPSFVRFa (FLP-9), RNKFEFIRFa (FLP-12) and KHEYLRFa (FLP-14) in vitro. Results were assessed by analysing reaction components with RP-HPLC, UV detection at 210 nm and peak integration. Based upon substrate peak size, more than 90% of most of the peptide substrates was consumed after 1 h at 27°C, but digestion was not complete even with a crude protease mixture. Two peptides, FLP-12 and FLP-14, were significantly less susceptible to digestion than the others. FLP-12 was the least susceptible of all sequences (71% loss; P < 0.0001), while FLP-14 was digested less (84% loss; P < 0.0004) than all but FLP-12. Product peak digestion patterns of FLP-12, a second nonapeptide (FLP-5-A), and FMRFa, incubated with aminopeptidase (amastatin) and serine endoprotease (AEBSF) inhibitors, demonstrated highly specific behaviours of each sequence to protease cleavage. Amastatin significantly (P < 0.03) reduced digestion of FLP-12 (54% loss) and FMRFa (61% loss; P < 0.0005), but had no effect on FLP-5-A. AEBSF had no protective effect on FMRFa but significantly decreased hydrolysis of FLP-5-A (77% loss; P < 0.0001) and FLP-12 (59% loss; P < 0.03). The combination of both inhibitors had additive effects only for FMRFa (34% loss; P < 0.0005). Further analysis of FMRFa digestion using peptides with d-amino acid substitutions demonstrated nearly complete protection of FdMRFa (2% loss; P < 0.0001) from all proteolytic digestion, whereas digestion of FMRdFa was complete. Results suggest that in addition to aminopeptidase and serine proteases, both deamidase and aminopeptidase P participate in neuropeptide metabolism in P. redivivus.
- Type
- Research Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2008
Footnotes
Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.
References
- 4
- Cited by