Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T12:02:21.091Z Has data issue: false hasContentIssue false

Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links

Published online by Cambridge University Press:  26 January 2017

S. Zuo
Affiliation:
Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
P.W. Kania
Affiliation:
Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
F. Mehrdana
Affiliation:
Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
M.H. Marana
Affiliation:
Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
K. Buchmann*
Affiliation:
Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
*

Abstract

Populations of grey seals (Halichoerus grypus), sprats (Sprattus sprattus) and cod (Gadus morhua) in the Baltic Sea are relatively stationary. The present work, applying classical and molecular helminthological techniques, documents that seals and cod also share a common parasite, the anisakid nematode Contracaecum osculatum, which uses seals as the final host and fish as transport hosts. Sequencing mitochondrial genes (COX1 and COX2) in adult worms from seals and third-stage larvae from livers of Baltic fish (sprats and cod), showed that all gene variants occur in both seals and fish. Other anisakid nematodes Pseudoterranova decipiens and Anisakis simplex are also found in both seals and cod in the Baltic Sea, but at much lower rates. The Baltic grey seal population was left at a critically low level (comprising a few hundred individuals) during the latter part of the 20th century, but since the year 2000 a marked increase in the population has been observed, reaching more than 40,000 individuals at present. Ecological consequences of the increased seal abundance may result from increased predation on fish stocks, but recent evidence also points to the influence of elevated parasitism on fish performance. Contracaecum osculatum larvae preferentially infect the liver of Baltic cod, considered a vital organ of the host. Whereas low prevalences and intensities in cod were reported during the 1980s and 1990s, the present study documents 100% prevalence and a mean intensity of above 80 worms per fish. Recent studies have also indicated the zoonotic potential of C. osculatum larvae in fish, following the consumption of raw or under-cooked fish. Therefore the present work discusses the impact of parasitism on the cod stock and the increasing risk for consumer health, and lists possible solutions for control.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackman, R.G. & Gjelstad, R.T. (1975) Gas chromatographic resolution of isomeric pentanols and pentanones in the identification of volatile alcohols and ketones in the codworm Terranova decipiens . Analytical Biochemistry 67, 684687.CrossRefGoogle ScholarPubMed
Aspholm, P.E., Ugland, K.I., Jodestol, K.A. & Berland, B. (1995) Seal worm (Pseudoterranova decipiens) infection in common seals (Phoca vitulina) and potential intermediate fish hosts from the outer Oslo Fjord. International Journal for Parasitology 25, 367373.CrossRefGoogle Scholar
Bagge, O., Steffensen, E. & Bay, J. (1994) The Baltic cod. Dana 10, 128.Google Scholar
Bahlool, Q.M., Skovgaard, A., Kania, P.W., Buchmann, K. (2013) Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 35, 734739.CrossRefGoogle ScholarPubMed
Beck, M., Evans, R., Feist, S.W., Stebbing, P., Longshaw, M. & Harris, E. (2008) Anisakis simplex sensu lato associated with red vent syndrome in wild Atlantic salmon Salmo salar in England and Wales. Diseases of Aquatic Organisms 82, 6165.CrossRefGoogle ScholarPubMed
Buchmann, K. & Kania, P. (2012) Emerging Pseudoterranova decipiens (Krabbe, 1878) problems in Baltic cod, Gadus morhua L., associated with grey seal colonization of spawning grounds. Journal of Fish Diseases 35, 861866.CrossRefGoogle ScholarPubMed
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, J.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Casini, M., Cardinale, M. & Arrhenius, F. (2004) Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES Journal of Marine Science 61, 12671277.CrossRefGoogle Scholar
Chouinard, G.A., Swain, D.P., Hammill, M.O. & Poirier, G.A. (2005) Covariation between grey seal (Halichoerus grypus) abundance and natural mortality of cod (Gadus morhua) in the southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 62, 19912000.CrossRefGoogle Scholar
Dzido, J., Kijewska, A. & Rokicki, J. (2012) Selected mitochondrial genes as species markers of the Arctic Contracaecum osculatum complex. Journal of Helminthology 86, 252258.CrossRefGoogle ScholarPubMed
Eero, M., Hjelm, J., Behrens, J., Buchmann, K., Cardinale, M., Casini, M., Gasyukov, P., Holmgren, N., Horbowy, J., Hüssy, K., Kirkegaard, E., Kornilovs, G., Krumme, U., Köster, F.W., Oeberst, R., Plikshs, M., Radtke, K., Raid, T., Schmidt, J., Tomczak, M.T., Vinther, M., Zimmermann, C. & Storr-Paulsen, M. (2015) Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES Journal of Marine Science 72, 21802186.CrossRefGoogle Scholar
Fagerholm, H.P. (1982) Parasites of fish in Finland. VI Nematodes. Acta Academiae Aboensis, Series B 40, 5128.Google Scholar
Haarder, S., Kania, P.W. & Buchmann, K. (2013) Comparative infectivity of three larval nematode species in three different salmonids. Parasitology Research 112, 29973004.CrossRefGoogle ScholarPubMed
Haarder, S., Kania, P.W., Galatius, A. & Buchmann, K. (2014) Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982–2012) associated with increasing grey seal (Halichoerus gryphus) populations. Journal of Wildlife Diseases 50, 537543.CrossRefGoogle ScholarPubMed
Hauksson, E. (2002) Decreases in sealworm (Pseudoterranova sp.) abundance in short-spined sea scorpion (Myoxocephalus scorpius) following declines in numbers of seals at Hvalseyjar, western Iceland. Polar Biology 25, 531537.CrossRefGoogle Scholar
Hauksson, E. (2011) The prevalence, abundance, and density of Pseudoterranova sp. (p) larvae in the flesh of cod (Gadus morhua) relative to proximity of grey seal (Halichoerus grypus) colonies on the coast off Drangar, Northwest Iceland. Journal of Marine Biology 23, 5852.Google Scholar
HELCOM (2016) Population trends and abundance of seals. Available at www.helcom.fi (accessed 30 May 2016).Google Scholar
Horbowy, J., Podolska, M. & Nadolna-Altyn, K. (2016) Increasing occurrence of anisakid nematodes in the liver cod (Gadus morhua) from the Baltic Sea: does infection affect the condition and mortality of fish? Fisheries Research 179, 98103.CrossRefGoogle Scholar
Hüssy, K., Hinrichsen, H.-H., Eero, M., Mosegaard, H., Hemmer-Hansen, J., Lehmann, A. & Lundgaard, L.S. (2016) Spatio-temporal trends in stock mixing of eastern and western Baltic cod in the Arkona Basin and the implications for recruitment. ICES Journal of Marine Science 73, 293303.CrossRefGoogle Scholar
ICES (2015) Cod (Gadus morhua) eastern Baltic stock in Subdivisions 25–32 (Eastern Baltic Sea) and subdivision 24. ICES Advice 2015 8, 18.Google Scholar
Jensen, T. & Idås, K. (1992) Infection with Pseudoterranova decipiens (Krabbe, 1878) larvae in cod (Gadus morhua) relative to proximity of seal colonies. Sarsia 76, 227230.CrossRefGoogle Scholar
Køie, M. & Fagerholm, H.P. (1995) The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitology Research 81, 481489.CrossRefGoogle ScholarPubMed
Krabbe, H. (1878) Saelernes and tandhvalernes spolorme (Worms of seals and whales). Kongelige Danske Videnskabernes Selskab (Royal Danish Society of Sciences) 1, 4351 (in Danish).Google Scholar
Levsen, A. & Berland, B. (2012) Anisakis species. pp. 298309 in Woo, P.T.K. & Buchmann, K. (Eds) Fish parasites, pathobiology and protection. London, CAB International.CrossRefGoogle Scholar
Lunneryd, S.G., Boström, M.K. & Aspholm, P.E. (2015) Sealworm (Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod (Gadus morhua) and shorthorn sculpin (Myoxocephalus scorpius) in the Baltic Sea. Parasitology Research 114, 257264.CrossRefGoogle Scholar
Margolis, L. (1977) Public health aspects of ‘codworm’ infection: a review. Journal of the Fisheries Research Board of Canada 34, 887898.CrossRefGoogle Scholar
Mattiucci, S. & Nascetti, G. (2007) Genetic diversity and infection levels of anisakid nematodes parasitic in fish and marine mammals from Boreal and Austral hemispheres. Veterinary Parasitology 148, 4357.CrossRefGoogle ScholarPubMed
Mattiucci, S. & Nascetti, G. (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary process. Advances in Parasitology 66, 47148.CrossRefGoogle Scholar
Mattiucci, S., Paggi, L., Nascetti, G., Ishikura, H., Kikuchi, K., Sato, N., Cianchi, R. & Bullini, L. (1998) Allozyme and morphological identification of Anisakis, Contracaecum and Pseudoterranova from Japanese waters (Nematoda, Ascaridoidea). Systematic Parasitology 40, 8192.CrossRefGoogle Scholar
McClelland, G. (2002) The trouble with sealworms (Pseudoterranova decipiens species complex, Nematoda): a review. Parasitology 124, 183203.CrossRefGoogle ScholarPubMed
Mehrdana, F., Bahlool, Q.Z., Skov, J., Marana, M.H., Sindberg, D., Mundeling, M., Overgaard, B.C., Korbut, R., Strøm, S.B., Kania, P.W. & Buchmann, K. (2014) Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Veterinary Parasitology 205, 581587.CrossRefGoogle ScholarPubMed
Nadler, S.A. & Hudspeth, D.S. (2000) Phylogeny of the ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. Journal of Parasitology 86, 380393.CrossRefGoogle ScholarPubMed
Nadolna, K. & Podolska, M. (2014) Anisakid larvae in the liver of cod (Gadus morhua) L. from the southern Baltic Sea. Journal of Helminthology 88, 237246.CrossRefGoogle ScholarPubMed
Nagasawa, K. (2012) The biology of Contracaecum osculatum sensu lato and C. osculatum A (Nematoda: Anisakidae) in Japanese waters: a review. Biosphere Science 51, 6169.Google Scholar
Noguera, P., Collins, C., Bruno, D., Pert, C., Turnbull, A., McIntosh, A., Lester, K., Bricknell, I., Wallace, S. & Cook, P. (2009) Red vent syndrome in Wild Atlantic salmon Salmo salar in Scotland is associated with Anisakis simplex sensu stricto (Nematoda: Anisakidae). Diseases of Aquatic Organisms 87, 199215.CrossRefGoogle ScholarPubMed
Ólafsdóttir, D. & Hauksson, E. (1997) Anisakid (Nematoda) infestations in Icelandic grey seals (Halichoerus grypus Fabr.). Journal of the Northwestern Atlantic Fisheries Science 22, 259269.CrossRefGoogle Scholar
Ólafsdóttir, D. & Hauksson, E. (1998) Anisakid nematodes in the common seal Phoca vitulina L. in Icelandic waters. Sarsia 83, 309316.CrossRefGoogle Scholar
Perdiguero-Alonso, D., Montero, F., Raga, J.A. & Kostadinova, A. (2008) Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae) in the North East Atlantic. Parasites & Vectors 1, 118.CrossRefGoogle ScholarPubMed
Petrushevski, G.K. & Shulman, G.G. (1955) Infection of Baltic cod liver with roundworms. Trudy Akademia. Nauk Litovskoj SSR Ser. B. 2, 119125 (in Russian).Google Scholar
Rohlwing, T.M, Palm, H.W. & Rosenthal, H. (1998) Parasitisation with Pseudoterranova decipiens (Nematoda) influences the survival rate of the European smelt Osmerus eperlanus retained by a screen wall of a nuclear power plant. Diseases of Aquatic Organisms 32, 233236.CrossRefGoogle ScholarPubMed
Schaum, E. & Müller, W. (1967) Heterocheilidiasis (case report). Deutsche Medizinischer Wochenschrift 92, 22302233.CrossRefGoogle Scholar
Shamsi, S. & Butcher, A.R. (2011) First report of human anisakidosis in Australia. Medical Journal of Australia 194, 199200.CrossRefGoogle ScholarPubMed
Skirnisson, K. (2006) Pseudoterranova decipiens (Nematoda, Anisakidaeae) larvae reported from humans in Iceland after consumption of insufficiently cooked fish. Laeknabladid Icelandic Medical Journal 92, 2125 (in Icelandic).Google ScholarPubMed
Skov, J., Kania, P.W., Olsen, M.M., Lauridsen, J.H. & Buchmann, K. (2009) Nematode infections of maricultured and wild fishes in Danish waters: A comparative study. Aquaculture 298, 2428.CrossRefGoogle Scholar
Skrzypczak, M., Rokicki, J., Pawliczka, I., Najda, K. & Dzido, J. (2014) Anisakids of seals found on the Southern coast of Baltic Sea. Acta Parasitologica 59, 165172.CrossRefGoogle ScholarPubMed
Smith, J.W., Elarifi, A.E., Wootten, R. & Burt, M.D.B. (1990) Experimental infection of rainbow trout Oncorhynchus mykiss with Contracaecum osculatum (Rudolphi, 1802) and Pseudoterranova decipiens (Krabbe, 1878) (Nematoda; Ascaridoidea). Canadian Journal of Fisheries and Aquatic Sciences 47, 22932296.CrossRefGoogle Scholar
Sprengel, G. & Lüchtenberg, H. (1991) Infection by endoparasites reduces swimming speed of European smelt Osmerus eperlanus and European eel Anguilla anguilla . Diseases of Aquatic Organisms 11, 3135.CrossRefGoogle Scholar
Strøm, S.B., Haarder, S., Korbut, R., Mejer, H., Thamsborg, S.M., Kania, P.W. & Buchmann, K. (2015) Third-stage nematode larvae of Contracaecum osculatum from Baltic cod (Gadus morhua) elicit eosinophilic granulomatous reactions when penetrating the stomach mucosa of pigs. Parasitology Research 114, 12171220.CrossRefGoogle ScholarPubMed
Szostakowska, B., Myjak, P., Wyszynski, M., Pietkiewicz, H. & Rokicki, J. (2005) Prevalence of anisakine nematodes in fish from Southern Baltic Sea. Polish Journal of Microbiology 54 (Suppl.), 4145.Google Scholar
Torres, P., Jercic, M.I., Weitz, J.C., Dobrew, E.K. & Mercado, R.A. (2007) Human pseudoterranovosis, an emerging infection in Chile. Journal of Parasitology 93, 440443.CrossRefGoogle ScholarPubMed
Valtonen, E.T., Fagerholm, H.P. & Helle, E. (1988) Contracaecum osculatum (Nematoda: Anisakidae) in fish and seals in Bothnian Bay (norteastern Baltic Sea). International Journal of Parasitology 18, 365370.CrossRefGoogle Scholar
Zuo, S., Al-Jubury, A., Korbut, R., Christensen, N.H., Kania, P.W. & Buchmann, K. (2016) Host size dependent infection dynamics of Contracaecum osculatum (Nematoda, Anisakidae) in Baltic cod (Gadus morhua) associated with differential food preferences. Diseases of Aquatic Organisms 120, 6975.CrossRefGoogle Scholar