Published online by Cambridge University Press: 18 November 2009
The behaviour of six species of African schistosomes and their hybrids has been compared qualitatively and quantitatively in baboons, with a view to finding a schistosome of high infectivity but low pathogenicity to the baboon for use in heterologous immunity experiments. This study, which includes the first comparative study of the pathogenicity of these six species in primates, is complementary to earlier studies in rodents in which these schistosomes and their hybrids were compared in terms of egg morphology, snail infectivity, and infectivity and pathogenicity. In rodents, statistically significant differences were detected in the behaviour of each pair of sibling species with regard to percentage worm recovery, rate of egg production and percentage distribution of the eggs in the tissues, and the hybrids also differed significantly from their “parental” species.
Even greater differences were found in baboons. For example, although all the strains studied produced mature egg-laying adults in rodents, no worms, eggs, or histopathological changes resulted from exposure of baboons to S. rodhaini or S. bovis. With regard to prepatent period, S. mansoni was the shortest (5–6 weeks), S. haematobium the longest (12–14 weeks), while S. mattheei and S. intercalatum occupied intermediate positions (7–9 weeks). The hybrids all matured in 7–9 weeks except the S. bovis/S. mattheei hybrid (11–16 weeks). S. haematobium similarly had a much longer maturation time in rodents. Complete or partial “self-cure” occurred in 3 baboons but was not observed in rodents. The percentage worm recovery of S. mansoni was higher than for the S. mansoni/S. rodhaini hybrids while with the S. haematobium group of species, worm recovery was highest with S. mattheei followed by S. intercalatum and S. haematobium, the same order as in rodents. With the S. haematobium-group hybrids, worm recovery was generally high except with the S. bovis/S. haematobiuun hybrid.