Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T23:42:35.827Z Has data issue: false hasContentIssue false

Comparative study on DNA sequences of ribosomal DNA and cytochrome c oxidase subunit 1 of mitochondrial DNA among five species of gnathostomes

Published online by Cambridge University Press:  12 April 2024

K. Ando*
Affiliation:
Department of Medical Zoology, School of Medicine, Mie University, Tsu, 514-8507, Japan
M. Tsunemori
Affiliation:
Department of Medical Zoology, School of Medicine, Mie University, Tsu, 514-8507, Japan
H. Akahane
Affiliation:
Division of Parasitology, Department of Microbiology and Immunology, School of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
S. Tesana
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
H. Hasegawa
Affiliation:
Department of Infectious Diseases, Faculty of Medicine, Oita University, Hasama, Oita 879-5593, Japan
Y. Chinzei
Affiliation:
Department of Medical Zoology, School of Medicine, Mie University, Tsu, 514-8507, Japan
*
* Fax: +81-59-231-5215 E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nucleotide sequences of partial 18S, complete internal transcribed spacer region 1 (ITS1), complete 5.8S, complete ITS2 and partial 28S of ribosomal DNA (rDNA) and cytochrome c oxidase subunit 1 of mitochondrial DNA (MCOI) from five species of gnathostomes (G. spinigerum, G. doloresi, G. nipponicum, G. hispidum and G. binucleatum with the former four species being distributed in Japan and Asia) that cause human gnathostomiasis were compared by direct polymerase chain reaction cycle-sequencing. The nucleotide sequences of each region of the18S (613 bp), 5.8S (158 bp) and 28S (598 bp) rDNA from the five species were almost identical. The ITS1 region was different in length for the five species. The nucleotide sequences of each region of ITS2 and partial MCO1 regions were different among the five species. Therefore, these two regions can be used as genetic markers for identification of worms.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

References

Akahane, H., Iwata, K. & Miyazaki, I. (1982) Studies on Gnathostoma hispidum Fedchenko, 1872 parasitic in loaches imported from China. Japanese Journal of Parasitology 31, 507516 (in Japanese with English summary).Google Scholar
Akahane, H., Sano, M. & Mako, T. (1986) Morphological difference in cross sections of the advanced third-stage larvae of Gnathostoma spinigerum, G. hispidum and G. doloresi . Japanese Journal of Parasitology 35, 465467.Google Scholar
Akahane, H., Lamote-Argumedo, R., Martinez-Cruz, J.M., Osorio-Sarabia, D. & Garcia-Priento, L. (1994) A morphological observation of the advanced third-stage larvae of Mexican Gnathostoma . Japanese Journal of Parasitology 43, 1822.Google Scholar
Almeyda-Artigas, R.J., Bargues, M.D. & Mas-Coma, S. (2000) ITS-2 rDNA sequencing of Gnathostoma species (Nematoda) and elucidation of the species causing human gnathostomiasis in the Americas. Journal of Parasitology 86, 537544.CrossRefGoogle ScholarPubMed
Ando, K. (2003) Gnathostomiasis (2) Gnathostoma nipponicum. pp. 507518 in Otsuru, M., Kameya, S. & Hayashi, S. (Eds) Progress of medical parasitology in Japan 8. Tokyo, Japan, Meguro Parasitological Museum.Google Scholar
Ando, K., Tanaka, H., Taniguchi, Y., Shimizu, M. & Kondo, K. (1988) Two human cases of gnathostomiasis and discovery of a second intermediate host of Gnathostoma nipponicum in Japan. Journal of Parasitology 74, 623627.CrossRefGoogle ScholarPubMed
Ando, K., Tokura, H. & Chinzei, Y. (1990) Morphological features in cross section of early and advanced third-stage larvae of Gnathostoma nipponicum . Japanese Journal of Parasitology 39, 482487.Google Scholar
Ando, K., Hatsushika, R., Akahane, H., Matsuoka, H., Taylor, D., Miura, K. & Chinzei, Y. (1991) Gnathostoma nipponicum infection in the past human cases in Japan. Japanese Journal of Parasitology 40, 184186.Google Scholar
Ando, K., Ishikura, K., Nakakugi, T., Shimono, Y., Tamai, T., Sugawa, M., Limviroj, W. & Chinzei, Y. (2001) Five cases of Diphyllobothrium nihonkaiense infection with discovery of plerocercoids from an infective source, Oncorhynchus masou ishikawae . Journal of Parasitology 87, 96100.CrossRefGoogle ScholarPubMed
Daengsvang, S. (1980) A monograph on the genus Ganathostoma and gnathostomiasis in Thailand. Tokyo, SEAMIC.Google Scholar
Daengsvang, S. (1981) Gnathostomiasis in Southeast Asia. Southeast Asian Journal of Tropical Medicine and Public Health 12, 319332.Google ScholarPubMed
Hashimoto, K., Watanabe, T., Liu, C.X., Init, I., Blair, D., Ohnishi, S. & Agatsuma, T. (1997) Mitochondrial DNA and nuclear DNA indicate that the Japanese Fasciola species is, F. gigantica . Parasitology Research 83, 220225.CrossRefGoogle ScholarPubMed
Han, E.T., Lee, J.H., Choi, S.Y., Park, J.H., Shin, E.H. & Chai, J.Y. (2003) Surface ultrastructure of the advanced third-stage larvae of Gnathostoma nipponicum . Journal of Parasitology 89, 12451248.CrossRefGoogle ScholarPubMed
Hillis, D.M., Mable, B.K. & Moritz, C. (1996) Nucleic acids IV: sequencing and cloning. pp. 321383 in Hills, D.M., Moritz, C. & Mable, B.K. (Eds) Molecular systematics. Sunderland, Massachusetts, Sinauer.Google Scholar
Katayama, T., Yamamoto, M., Wada, H. & Satoh, N. (1993) Phylogenetic position of acoel turbellarians inferred from partial 18S rDNA sequences. Zoological Science 10, 529536.Google ScholarPubMed
Koga, M., Akahane, H., Ogata, K., Lamothe-Argumedo, R., Osorio-Satabia, D., Garcia-Prieto, L. & Martizez-Cruz, J.M. (1999) Adult Gnathostoma cf. binucleatum obtained from dogs experimentally infected with larvae as an etiological agent in Mexican gnathostomiasis; external morphology. Journal of the Helminthological Society of Washington 66, 4146.Google Scholar
Miyazaki, I. (1960) On the genus Gnathostoma and human gnathostomiasis, with special reference to Japan. Experimental Parasitology 9, 338370.CrossRefGoogle ScholarPubMed
Miyazaki, I. (1991) An illustrated book of helminthic zoonoses. pp. 369409 Tokyo, International Medical Foundation of Japan.Google Scholar
Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R. & Mapangou-Divassa, S. (1994) Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental and Applied Acarology 18, 351360.CrossRefGoogle ScholarPubMed
Nawa, Y., Imai, J., Ogata, K. & Otsuka, K. (1989) The first record of a confirmed case of Gnathostoma doloresi infection. Journal of Parasitology 75, 166169.CrossRefGoogle ScholarPubMed
Okamoto, M., Bessho, Y., Kamiya, M., Kurosawa, T. & Horii, T. (1995) Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene. Parasitology Research 81, 451458.CrossRefGoogle ScholarPubMed
Ollague-Loaiza, W., Ollague-Torres, J., Guevara, A., Veliz, D.E. & Penaherrera, S. (1984) Human gnathostomiasis in Ecuador (nodular migratory eosinophilic panniculitis): first finding of the parasite in South America. International Journal of Dermatology 23, 647651.CrossRefGoogle Scholar
Pelaez, D. & Perez-Reyes, R. (1970) Gnathostomiasis humana en America. Revista Latino-Americana de Microbiologia 12, 8391 (in Spanish with English abstract).Google Scholar
Sohn, W.M., Kho, W.G. & Lee, S.H. (1993) Larval Gnathostoma nipponicum found in the imported Chinese loaches. Korean Journal of Parasitology 3, 347352.CrossRefGoogle Scholar