Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T23:10:20.390Z Has data issue: false hasContentIssue false

The cestode Stringopotaenia psittacea (Fuhrmann, 1904) (Cestoda: Anoplocephalidae) from a critically endangered New Zealand bird: New evidence from ancient coprolites

Published online by Cambridge University Press:  06 December 2023

M. Horrocks*
Affiliation:
Microfossil Research Ltd, Auckland, New Zealand School of Environment, University of Auckland, Auckland, New Zealand
B. Presswell
Affiliation:
Evolutionary and Ecological Parasitology, University of Otago, Dunedin, New Zealand
*
Corresponding author: M. Horrocks; Email: [email protected]

Abstract

New Zealand’s kākāpō parrot, once widespread, is now critically endangered due to habitat loss and introduced mammalian predators. Prior to major population decline, a unique kākāpō cestode, Stringopotaenia psittacea, was found in the 1880s and first described in 1904. Here we report the discovery of eggs of this cestode in kākāpō coprolites of pre-human settlement age from the Honeycomb Hill cave system, north-west Nelson. Analysis of 52 samples, including coprolites of post-human settlement age, from nine sites within six South Island locations across a wide geographic range, yielded only eight infected samples in this single cave system. Results suggest that prior to human settlement, S. psittacea was not widespread within and between kākāpō populations, in marked contrast to other parasite types of the extinct moa spp. Intense management of the last remaining kākāpō has endangered or possibly caused the extinction of this cestode. This is the first confirmed record of S. psittacea since its discovery in 1884.

Type
Short Communication
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beveridge, I (1978). A taxonomic revision of the genera Cittotaenia Riehm, 1881, Ctenotaenia Railliet, 1893, Mosgovoyia Spasskii, 1951 and Pseudocittotaenia Tenora, 1976 (Cestoda: Anoplocephalidae). Mémoires du Muséum national d’Histoire Naturelle, Série A, Zoologie, 107, 1, 165.Google Scholar
Beveridge, I (1994). Family Anoplocephalidae. In Khalil, LF, Jones, A, Bray, RA (eds), Keys to the Cestode Parasites of Vertebrates. Wallingford, UK: CAB International, 315366.Google Scholar
Boast, AP, Weyrich, LS, Wood, JR, Metcalf, JL, Knight, R, Cooper, A (2018). Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proceedings of the National Academy of Sciences 115, 7, 15461551. https://doi.org/10.1073/pnas.1712337115CrossRefGoogle ScholarPubMed
Boast, AP (2014). A rare parrot and its passenger. Australian Centre for Ancient DNA blog. Available at https://acadadelaide.wordpress.com/2014/05/07/a-rare-parrot-and-its-passenger/ (accessed 23 November 2023).Google Scholar
Boast, AP, Wood, JR, Bolstridge, N, Perry, GLW, Wilmshurst, JM (2023). Ancient and modern scats record broken ecological interactions and a decline in dietary breadth of the critically endangered kākāpō parrot (Strigops habroptilus). Frontiers in Ecology and Evolution 11, 1058130. https://doi.org/10.3389/fevo.2023.1058130CrossRefGoogle Scholar
Caley, J (1975). In vitro hatching of the tapeworm Moniezia expansa (Cestoda: Anoplocephalidae) and some properties of the egg membranes. Zeitschrift für Parasitenkunde 454, 335346. https://doi.org/10.1007/BF00329823CrossRefGoogle ScholarPubMed
David, ED, Lindquist, WD (1982). Determination of the specific gravity of certain helminth eggs using sucrose density gradient centrifugation. Journal of Parasitology 68, 5, 916919.CrossRefGoogle ScholarPubMed
Fuhrmann, O (1904). Neue Anoplocephaliden der vögel. Zoologischer Anzeiger 27, 384388.Google Scholar
Fuhrmann, O (1922). Einige Anoplocephaliden der vögel. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt I, 87, 438451.Google Scholar
Gill, B, Martinson, P (1991). New Zealand’s Extinct Birds. Auckland, NZ: Random Century.Google Scholar
Horrocks, M (2020). Recovering plant microfossils from archaeological and other paleoenvironmental deposits: A practical guide developed from Pacific Region experience. Asian Perspectives 59, 1, 186208.CrossRefGoogle Scholar
Horrocks, M, D’Costa, D, Wallace, R, Gardner, R, Kondo, R (2004). Plant remains in coprolites: Diet of a sub-alpine moa (Dinornithiformes) from southern New Zealand. Emu 104, 2, 149156. https://doi.org/10.1071/MU03019CrossRefGoogle Scholar
Horrocks, M, Salter, J, Braggins, J, Nichol, S, Moorhouse, R, Elliott, G (2008). Plant microfossil analysis of coprolites of the critically endangered kakapo (Strigops habroptilus) parrot from New Zealand. Review of Palaeobotany and Palynology 149, 3–4, 229245. https://doi.org/10.1016/j.revpalbo.2007.12.009CrossRefGoogle Scholar
IUCN (2022). The International Union for Conservation of Nature’s Red List of Threatened Species. Version 2022–2. Available at https://www.iucnredlist.org. (accessed 19 October 2023).Google Scholar
Kondo, R, Childs, C, Atkinson, I (1994). Opal Phytoliths of New Zealand. Lincoln, NZ: Manaaki Whenua Press.Google Scholar
Lafferty, KD, Hopkins, SR (2018). Unique parasite aDNA in moa coprolites from New Zealand suggests mass parasite extinctions followed human-induced megafauna extinctionsProceedings of the National Academy of Sciences 115, 7, 14111413. https://doi.org/10.1073/pnas.1722598115CrossRefGoogle Scholar
Poulin, R (2021). The rise of ecological parasitology: Twelve landmark advances that changed its historyInternational Journal for Parasitology 51, 13–14, 10731084. https://doi.org/10.1016/j.ijpara.2021.07.001CrossRefGoogle ScholarPubMed
Powlesland, RP, Merton, DV, Cockrem, JF (2006). A parrot apart: The natural history of the kakapo (Strigops habroptilus), and the context of its conservation management. Notornis 53, 1, 326.Google Scholar
Reischek, A (1884). Art. -XX. Notes on New Zealand ornithology. Transactions of the New Zealand Institute 17, 187197.Google Scholar
Schirtzinger, EE, Tavares, ES, Gonzales, LA, Eberhard, JR, Miyaki, CY, Sanchez, JJ,Hernandez, A, Müeller, H, Graves, GR, Fleisher, RC, Wright, TF (2012). Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes Molecular Phylogenetics and Evolution 64, 2342356. https://doi.org/10.1016/j.ympev.2012.04.009CrossRefGoogle Scholar
Spencer, HG, Zuk, M (2016). For hosts’s sake: The pluses of parasite preservation. Trends in Ecology and Evolution 31, 5, 341343. https://doi.org/10.1016/j.tree.2016.02.021CrossRefGoogle ScholarPubMed
Stringer, AP, Linklater, W (2014). Everything in moderation: Principles of parasite control for wildlife conservation. BioScience 64, 10, 932937. https://doi.org/10.1093/biosci/biu135CrossRefGoogle Scholar
Walter, R, Buckley, H, Jacomb, C, Matisoo-Smith, E (2017). Mass migration and the Polynesian settlement of New ZealandJournal of World Prehistory 30, 315376. https://doi.org/10.1007/s10963-017-9110-yCrossRefGoogle Scholar
Wood, JR, Richardson, SJ, McGlone, MS, Wilmshurst, JM (2020). The diets of moa (Aves: Dinornithiformes). New Zealand Journal of Ecology 44, 1, 3397. https://doi.org/10.20417/nzjecol.44.3CrossRefGoogle Scholar
Wood, JR, Wilmshurst, JM, Rawlence, NJ, Bonner, KI, Worthy, TH, Kinsella, JM, Cooper, A (2013). A megafauna’s microfauna: Gastrointestinal parasites of New Zealand’s extinct moa (Aves: Dinornithiformes). PLOS ONE 8, 2, e57315. https://doi.org/10.1371/journal.pone.0057315CrossRefGoogle ScholarPubMed
Worthy, TH, Holdaway, RN (2002). The Lost World of the Moa: Prehistoric Life in New Zealand. Bloomington, IN: Indiana University Press.Google Scholar