Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T06:09:53.308Z Has data issue: false hasContentIssue false

Acquired resistance in rainbow trout against Gyrodactylus derjavini

Published online by Cambridge University Press:  12 April 2024

T. Lindenstrøm*
Affiliation:
Department of Veterinary Microbiology, Section of Fish Diseases, Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
K. Buchmann
Affiliation:
Department of Veterinary Microbiology, Section of Fish Diseases, Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
*
*Fax: +45 35 28 27 11 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Investigations were conducted on the host response in rainbow trout and the associated changes in mucous cell density during infection with the skin monogenean Gyrodactylus derjavini. Parasite populations increased on all naive hosts and peaked 4–5 weeks p.i. after which infection levels decreased. Introduction of naive fish into responding host populations resulted in heavy infections of the naive fish, whereas parasite expulsion continued in the responding host groups showing an acquired, non-sterile immunity. This non-sterile immunity lasted at least a month as these hosts were refractory to reinfection despite being exposed to a high infection pressure. Mucous cell hyperplasia was seen in some groups during the intermediary phase of infection, but at the termination of the study a significant depletion was evident. Passive immunization of naive host (with sera from immune hosts) did not confer protection. This indicates differences between host responses to G. derjavini compared to responses against other pathogens where such a passive immunity has been described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

References

Andersen, P.S. & Buchmann, K. (1998) Temperature dependent population growth of Gyrodactylus derjavini on rainbow trout. Journal of Helminthology 72, 914.CrossRefGoogle ScholarPubMed
Bakke, T.A., Harris, P.D. & Jansen, P.D. (1992) The susceptibility of Salvelinus fontinalis (Mitchill) to Gyrodactylus salaris Malmberg (Platyhelminthes, Monogenea) under experimental conditions. Journal of Fish Biology 41, 499507.CrossRefGoogle Scholar
Balm, P.H.M., Lieshout, E., Lokate, J. & Wendelaar Bonga, S.E. (1995) Bacterial lipopolysaccharide (LPS) and interleukin 1 (IL-1) exert multiple physiological effects in the tilapia Oreochromis mossambicus (Teleostei). Journal of Comparative Physiology B 165, 8592.CrossRefGoogle ScholarPubMed
Buchmann, K. (1993) A note on the humoral immune response of infected Anguilla anguilla against the gill monogenean Pseudodactylogyrus bini . Fish and Shellfish Immunology 3, 397399.CrossRefGoogle Scholar
Buchmann, K. (1998a) Some histochemical characteristics of the mucous microenvironment in four salmonids with different susceptibilities to gyrodactylid infections. Journal of Helminthology 72, 101107.CrossRefGoogle Scholar
Buchmann, K. (1998b) Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes, Monogenea). Diseases of Aquatic Organisms 32, 195200.CrossRefGoogle ScholarPubMed
Buchmann, K. (1999) Immune mechanisms in fish skin against monogenean infections — a model. Folia Parasitologia 46, 19.Google ScholarPubMed
Buchmann, K. & Bresciani, J. (1998) Microenvironment of Gyrodactylus derjavini on rainbow trout Oncorhynchus mykiss: association between mucous cell density in skin and site selection. Parasitology Research 84, 1724.CrossRefGoogle ScholarPubMed
Buchmann, K. & Bresciani, J. (1999) Rainbow trout leucocyte activity: influence on the ectoparasitic monogenean Gyro-dactylus derjavini . Diseases of Aquatic Organisms 35, 1322.CrossRefGoogle Scholar
Buchmann, K. & Uldal, A. (1997) Gyrodactylus derjavini infections in four salmonids: comparative host susceptibility and site selection of parasites. Diseases of Aquatic Organisms 28, 201209.CrossRefGoogle Scholar
Castro, G.A. & Harari, Y. (1982) Intestinal epithelial membrane changes in rats immune to Trichinella spiralis . Molecular and Biochemical Parasitology 6, 191204.CrossRefGoogle ScholarPubMed
Cohan, V.L., Scott, A.L., Dinarello, C.A. & Prendergast, R.A. (1991) Interleukin-1 is a mucus secretagogue. Cellular Immunology 136, 425434.CrossRefGoogle ScholarPubMed
Cone, D.K. & Cusack, R. (1988) A study of Gyrodactylus colmanensisMizelle and Kritsky, 1967 and Gyrodactylus salmonis (Yin and Sproston, 1948) (Monogenea) parasitizing captive salmonids in Nova Scotia. Canadian Journal of Zoology 66, 409415.CrossRefGoogle Scholar
Cusack, R. (1986) Development of infections of Gyrodactylus colemanensis Mizelle and Kritsky, 1967 (Monogenea) and the effect on fry of Salmo gardneri Richardson. Journal of Parasitology 72, 663668.CrossRefGoogle Scholar
Fujino, T. & Fried, B. (1993) Echinostoma caproni and E. trivolvis alter the binding of glycoconjugates in the intestinal mucosa of C3H mice as determined by lectin histochemistry. Journal of Helminthology 67, 179188.CrossRefGoogle Scholar
Gudmundsdóttir, B.K. & Magnadóttir, B. (1997) Protection of Atlantic salmon (Salmo salar L.) against an experimental infection of Aeromonas salmonicida ssp. Achromogenes . Fish and Shellfish Immunology 7, 5569.CrossRefGoogle Scholar
Harris, P.D., Soleng, A. & Bakke, T.A. (1997) Cortisol induced immunosuppression renders brook trout (Salvelinus fontinalis) susceptible to Gyrodactylus salaris infection. Bulletin of the Scandinavian Society for Parasitology 7, 70.Google Scholar
Harris, P.D., Soleng, A. & Bakke, T.A. (1998) Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement. Parasitology 117, 137143.CrossRefGoogle ScholarPubMed
Heggberget, T.G. & Johnsen, B.O. (1982) Infestation by Gyrodactylus sp. of Atlantic salmon, Salmo salar L., in Norwegian rivers. Journal of Fish Biology 21, 1526.CrossRefGoogle Scholar
Houghton, G. & Ellis, A.E.(1996) Pancreas disease in Atlantic salmon: serum neutralisation and passive immunisation. Fish and Shellfish Immunology 6, 465472.CrossRefGoogle Scholar
Ishikawa, N., Horii, Y. & Nawa., Y. (1994) Inhibitory effects of concurrently present 'normal' Nippostrongylus brasiliensis worms on expulsion of 'damaged' worms and associated goblet cell changes in rats. Parasite Immunology 16, 329332.CrossRefGoogle ScholarPubMed
Lester, R.J.G. (1972) Attachment of Gyrodactylus to Gasterosteus and host response. Journal of Parasitology 58, 717722.CrossRefGoogle ScholarPubMed
Lester, R.J.G. & Adams, J.R. (1974) Gyrodactylus alexanderi: reproduction, mortality and effect on its host Gasterosteus aculeatus . Canadian Journal of Zoology 52, 827833.CrossRefGoogle ScholarPubMed
Lindenstrøm, T. & Buchmann, K. (1998) Dexamethasone treatment increases susceptibility of rainbow trout, Oncorhynchus mykiss (Walbaum), to infections with Gyrodactylus derjavini Mikailov. Journal of Fish Diseases 21, 2938.CrossRefGoogle ScholarPubMed
Manjili, M.H., France, M.P., Sangster, N.C. & Rothwell, T.L.W. (1998) Quantitative and qualitative changes in intestinal goblet cells during primary infection of Trichostrongylus colubriformis high and low responder guinea pigs. International Journal for Parasitology 28, 761765.CrossRefGoogle ScholarPubMed
Margolis, L., Esch, G.W., Holmes, J.C., Kuris, A.M. & Schad, G.A. (1982) The use of ecological terms in parasitology. Journal of Parasitology 68, 131133.CrossRefGoogle Scholar
McKenzie, G.J., Bancroft, A., Grencis, R.K. & McKenzie, A.M.J. (1998) A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Current Biology 8, 339342.CrossRefGoogle ScholarPubMed
Miller, H.R.P. & Nawa, Y. (1979) Nippostrongylus brasiliensis: intestinal goblet-cell response in adoptively immunized rats. Experimental Parasitology 47, 8190.CrossRefGoogle ScholarPubMed
Pottinger, T.G., Pickering, A.D. & Blackstock, N. (1984) Ectoparasite induced changes in epidermal mucification of the brown trout, Salmo trutta L. Journal of Fish Biology 25, 123128.CrossRefGoogle Scholar
Richards, G.R. & Chubb, J.C. (1996) Host response to initial and challenge infections, following treatment, of Gyrodactylus bullatarudis and G. turnbulli (Monogenea) on the guppy (Poecilia reticulata). Parasitology Research 82, 242247.CrossRefGoogle Scholar
Sakai, D.K. (1992) Repertoire of complement in immunological defence mechanisms of fish. Annual Review of Fish Diseases 2, 223247.CrossRefGoogle Scholar
Scott, M.E. (1982) Reproductive potential of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata). Parasitology 85, 217236.CrossRefGoogle Scholar
Slotved, H.C. & Buchmann, K. (1993) Acquired resistance of the eel, Anguilla anguilla L., to challenge infections with gill monogeneans. Journal of Fish Diseases 16, 585591.CrossRefGoogle Scholar
Sterud, E., Harris, P.H. & Bakke, T.A. (1998) The influence of Gyrodactylus salaris Malmberg, 1957 (Monogenea) on the epidermis of Atlantic salmon, Salmo salar L., and brook trout, Salvelinus fontinalis (Mitchill), experimental studies. Journal of Fish Diseases 21, 257263.CrossRefGoogle ScholarPubMed
Urawa, S. (1992) Epidermal responses of chum salmon (Oncorhynchus keta) fry to the ectoparasitic flagellate Icthyobodo necator . Canadian Journal of Zoology 70, 15671575.CrossRefGoogle Scholar
Viele, D., Kerstetter, T.H. & Sullivan, J. (1980) Adoptive transfer of immunity against Vibrio anguillarum in rainbow trout, Salmo gairdneri Richardson, vaccinated by the immersion method. Journal of Fish Biology 17, 379386.CrossRefGoogle Scholar
Vladimirov, V.L. (1971) The immunity of fishes in the case of dactylogyrosis. Parasitologiya 5, 5158.Google Scholar
Wang, R., Kim, J-H., Sameshima, M. & Ogawa, K. (1997) Detection of antibodies against the monogenean Heterobothrium okamotoi in Tiger puffer by ELISA. Fish Pathology 32, 179180.CrossRefGoogle Scholar
Wells, P.R. & Cone, D.K. (1990) Experimental studies on the effect of Gyrodactylus colmanensis and G. salmonis (Monogenea) on the density of mucous cells in the epidermis of fry of Oncorhynchus mykiss . Journal of Fish Biology 37, 599603.CrossRefGoogle Scholar