Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-20T17:08:49.877Z Has data issue: false hasContentIssue false

Zinc deficiency and host response to helminth infection: Echinostoma caproni infections in CBA mice

Published online by Cambridge University Press:  05 June 2009

J. Bæk
Affiliation:
Danish Bilharziasis Laboratory, Jaegersborg Allé 1D, DK-2920 Charlottenlund, Denmark
P. E. Simonsen*
Affiliation:
Danish Bilharziasis Laboratory, Jaegersborg Allé 1D, DK-2920 Charlottenlund, Denmark
H. Friis
Affiliation:
Danish Bilharziasis Laboratory, Jaegersborg Allé 1D, DK-2920 Charlottenlund, Denmark
N. Ø. Christensen
Affiliation:
Danish Bilharziasis Laboratory, Jaegersborg Allé 1D, DK-2920 Charlottenlund, Denmark
*
Author for correspondence

Abstract

The effect of zinc deficiency on the response of CBA mice to infection with the intestinal trematode Echinostoma caproni was examined. Young CBA mice were allocated to one of three dietary groups: a group fed a zinc deficient diet ad libitum, a control group pair fed a zinc sufficient diet and a control group fed a zinc sufficient diet ad libitum. The mice on the zinc deficient diet gained significantly less weight than the pair fed controls. In primary infections with six E. caproni metacercariae followed over a period of 128 days, zinc deficiency delayed worm expulsion. In addition, zinc deficiency resulted in a prolonged IgM response, a delayed IgG response and an increased IgA response towards the end of the experiment. Resistance to challenge infection day 21 following a primary infection with 25 E. caproni metacercariae was slightly, but not significantly, affected by zinc deficiency.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agger, M. K., Simonsen, P.E. & Vennervald, B. J. (1993) The antibody response in serum, intestinal wall and intestinal lumen of NMRI mice infected with Echinostoma caproni. Journal of Helminthology 67, 169178.CrossRefGoogle Scholar
Bundy, D.A.P. & Golden, M.H.N. (1987) The impact of host nutrition on gastrointestinal helminth infections. Parasitology 95, 623635.CrossRefGoogle Scholar
Christensen, N.Ø., Frandsen, F. & Roushdy, M. Z. (1980) The influence of environmental conditions and parasite-intermediate host-related factors on the transmission of Echinostoma liei. Zeitschrift für Parasitenkunde 63, 4763.Google Scholar
Christensen, N.Ø., Fagbemi, B. & Nansen, P. (1984) Trypanosoma brucei-induced blockage of expulsion of Echinostoma revolutum and of homologous E. revolutum resistance in mice. Journal of Parasitology 70, 558561.CrossRefGoogle ScholarPubMed
Christensen, N.Ø., Knudsen, J., Fagbemi, B. O. & Nansen, P. (1985) Impairment of primary expulsion of Echinostoma revolutum in mice concurrently infected with Schistosoma mansoni. Journal of Helminthology 59, 333335.CrossRefGoogle ScholarPubMed
Christensen, N.Ø., Knudsen, J. & Andreassen, J. (1986) Echinostoma revolutum: resistance to secondary and superimposed infections in mice. Experimental Parasitology 61, 311318.CrossRefGoogle ScholarPubMed
Christensen, N.Ø., Odaibo, A. B. & Simonsen, P. E. (1988) Echinostoma population regulation in experimental rodent definitive hosts. A review. Parasitology Research 75, 8387.CrossRefGoogle Scholar
El-Hag, H.M.A., MacDonald, D. C., Fenwick, P., Aggett, P. J. & Wakelin, D. (1989) Kinetics of Nippostrongylus brasiliensis infection in the zinc-deficient rat. Journal of Nutrition 119, 15061512.CrossRefGoogle ScholarPubMed
Fenwick, P. K., MacDonald, D. C., Huber, C. & Wakelin, D. (1990a) Zinc deficiency and zinc repletion: effect on the response of rats to infection with Trichinella spiralis. American Journal of Clinical Nutrition 52, 166172.CrossRefGoogle ScholarPubMed
Fenwick, P. K., MacDonald, D. C., Huber, C. & Wakelin, D. (1990b) Zinc deprivation and zinc repletion: effect on the response of rats to infection with Strongyloides ratti. American Journal of Clinical Nutrition 52,173177.CrossRefGoogle ScholarPubMed
Fernandez, G., Nair, M., Onoe, K., Tanaka, T., Floyd, R. & Good, R. A. (1979) Impairment of cell-mediated immune functions by dietary zinc deficiency in mice. Proceedings of the National Academy of Science 76, 457461.Google Scholar
Fraker, P. J., Haas, S. M. & Luecke, R. W. (1977) Effect of zinc deficiency on the immune response of the young adult A/J mouse. Journal of Nutrition 107,18891995.CrossRefGoogle ScholarPubMed
Fraker, P. J., Hildebrandt, K. & Luecke, R. W. (1984) Alteration of antibody mediated responses of suckling mice to T-cell-dependent and independent antigens by maternal marginal zinc deficiency: restoration of responsivity by nutritional repletion. Journal of Nutrition 114, 170179.CrossRefGoogle ScholarPubMed
Fraker, P. J., Gershwin, E. M., Good, R. A. & Prasad, A. (1986) Interrelationships between zinc and immune function. Federation Proceedings 45, 14741479.Google ScholarPubMed
Fried, B. & Sousa, K. R. (1990) Single- and five worm infections of Echinostoma caproni (Trematoda) in the ICR mouse. International Journal for Parasitology 20,125126.CrossRefGoogle ScholarPubMed
Golden, M.H.N. (1989) The diagnosis of zinc deficiency, pp. 323333 in Mills, C. F. (Ed) Zinc in human biology. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Hosier, D. W. & Fried, B. (1991) Infectivity, growth and distribution of Echinostoma caproni (Trematoda) in the ICR mouse. Journal of Parasitology 77, 640642.CrossRefGoogle ScholarPubMed
Hosier, D. W., Fried, B. & Szewczak, J. P. (1988) Homologous and heterologous resistance of Echinostoma revolutum and E. liei in ICR mice. Journal of Parasitology 74, 8992.CrossRefGoogle Scholar
Huffman, J. E. & Fried, B. (1990) Echinostoma and echinostomiasis. Advances in Parasitology 29, 215267.CrossRefGoogle ScholarPubMed
Odaibo, A. B., Christensen, N.Ø. & Ukoli, F.M.A. (1988) Establishment, survival and fecundity in Echinostoma caproni (Trematoda) infections in NMRI mice. Proceedings of the Helminthological Society of Washington 55, 265269.Google Scholar
Odaibo, A. B., Christensen, N.Ø & Ukoli, F.M.A. (1989) Further studies on the population regulation in Echinostoma caproni infections in NMRI mice. Proceedings of the Helminthological Society of Washington 56, 192198.Google Scholar
Shi, H. N., Scott, M. E., Stephenson, M. M. & Koski, K. G. (1994) Zinc deficiency impairs T cell function in mice with primary infection of Heligmosomoides polygyrus (Nematoda). Parasite Immunology 16, 339350.CrossRefGoogle ScholarPubMed
Shi, H. N., Scott, M. E., Koski, K.G., Boulay, M. & Stephenson, M.M. (1995) Energy restriction and severe zinc deficiency influence growth, survival and reproduction of Heligmosomoides polygyrus (Nematoda) during primary and challenge infections in mice. Parasitology 110, 599609.CrossRefGoogle ScholarPubMed
Simonsen, P. E. & Jyding Andersen, B. (1986) Echinostoma revolutum in mice; dynamics of the antibody attack to the surface of an intestinal trematode. International Journal for Parasitology 16, 475482.CrossRefGoogle Scholar
Simonsen, P. E., Estambale, B. B. & Agger, M. (1991) Antibodies in the serum of golden hamsters experimentally infected with the intestinal trematode Echinostoma caproni. Journal of Helminthology 65, 239247.CrossRefGoogle ScholarPubMed
Southon, S., Gee, J. M., Bayliss, C. E., Wyatt, G. M., Horn, N. & Johnson, I. T. (1986) Intestinal microflora, morphology and enzyme activity in zinc-deficient and zinc-supplemented rats. British Journal of Nutrition 55,603611.CrossRefGoogle Scholar
Tomkins, A. & Watson, F. (1989) Malnutrition and infection: A review. ACC/SCN State-of-the-Art Series. Nutrition Policy Discussion Paper, No. 5. Geneva, United Nations.Google Scholar
Weinstein, M. S. & Fried, B. (1991) The expulsion of Echinostoma trivohis and retention of E. caproni in the ICR mouse: pathological effects. International Journal for Parasitology 21, 255257.CrossRefGoogle ScholarPubMed