Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-10T01:52:47.480Z Has data issue: false hasContentIssue false

Toxocara canis infections in mice: from subtle to severe consequences in 100 weeks

Published online by Cambridge University Press:  07 February 2025

Nicol Bernardová*
Affiliation:
Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
Jan Novák
Affiliation:
Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
Chia-Kwung Fan
Affiliation:
Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Libuše Kolářová
Affiliation:
Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia National Reference Laboratory for Tissue Helminthoses, General University Hospital in Prague, Prague, Czechia
Marta Chanová
Affiliation:
Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
*
Corresponding author: N. Bernardová; Email: [email protected]

Abstract

Toxocara canis is a widespread parasite of canids with a wide range of paratenic hosts, but also one of the overlooked agents causing nervous system infections of humans. Previous experimental infections of mice demonstrated the impact of high infection doses of larvae on neurobehavioral disorders and pathological changes. In contrast to previous studies, we aimed to investigate the long-term (up to 100 weeks) impact of low- to high-dose infection in mice. We focused on their physical condition, motor skills, and the accompanying pathologies in the brain. Three groups of BALB/c mice were infected with 10, 100, and 1000 T. canis larvae/mouse and specific anti-T. canis excretory-secretory antigens immunoglobulin G antibody response, general condition, and motor skills were tested in defined intervals within 100 weeks after infection. The number of larvae in selected organs was assessed and the pathological changes in the brain were studied histologically. As a result, subtle to severe impairments in general condition and motor skills were detected, with generally earlier onsets occurring the higher the infection dose was. The specific immunoglobulin G antibody levels corresponding to the infection dose were detected in all infected groups. Necrosis, cellular infiltrations, and foamy cells developed in moderate- and high-infection dose mice, in contrast with hemorrhages detected in all groups. This study demonstrated the long-term negative impact of T. canis infection on the paratenic host, particularly at moderate and high infectious doses. Although pathological changes in the brain were observed even in low-infection dose mice, their physical and motor condition was comparable to the control group.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akao, N, Tomoda, M, Hayashi, E, Suzuki, R, Shimizu-Suganuma, M, Shichinohe, K and Fujita, K (2003) Cerebellar ataxia due to Toxocara infection in Mongolian gerbils, Meriones unguiculatus. Veterinary Parasitology 113, 229237. https://doi.org/10.1016/S0304-4017(03)00079-7.CrossRefGoogle ScholarPubMed
Al-Hassnawi, ATS and Al-Quraishi, MA (2014) The effect of experimental Toxocara canis infection on behavior manipulating in albino rats. Journal of Babylon University for Pure and Applied Sciences 22, 23892395.Google Scholar
Bardón, R, Cuéllar, C and Guillén, J (1994) Larval distribution of Toxocara canis in BALB/c mice at nine weeks and one year post-inoculation. Journal of Helminthology 68, 359360. https://doi.org/10.1017/S0022149X00001644.CrossRefGoogle ScholarPubMed
Bauer, C, Lider, LA, Ussenbayev, AE, Seitkamzina, DM, Zhanabayev, AA, Maksimov, P and Knaus, M (2024) Toxascaris leonina in dogs–a nematode species of high prevalence in some regions of Eurasia. Veterinary Parasitology: Regional Studies and Reports 48, 100986. https://doi.org/10.1016/j.vprsr.2024.100986.Google ScholarPubMed
Blecharz-Klin, K, Świerczyńska, M, Piechal, A, Wawer, A, Joniec-Maciejak, I, Pyrzanowska, J, Wojnar, E, Zawistowska-Deniziak, A, Sulima-Celińska, A and Młocicki, D (2022) Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathogens 18, e1010330. https://doi.org/10.1371/journal.ppat.1010330.CrossRefGoogle ScholarPubMed
Cardiff, RD, Miller, CH and Munn, RJ (2014) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harbor Protocols 2014, 073411. https://doi.org/10.1101/pdb.prot073411.Google ScholarPubMed
Chou, CM, Lee, YL, Liao, CW, Huang, YC and Fan, CK (2017) Enhanced expressions of neurodegeneration-associated factors, UPS impairment, and excess Aβ accumulation in the hippocampus of mice with persistent cerebral toxocariasis. Parasites & vectors 10, 114. https://doi.org/10.1186/s13071-017-2578-6.CrossRefGoogle ScholarPubMed
Corrêa, FM, Chieffi, PP, Lescano, SAZ and SVd, Santos (2014) Behavioral and memory changes in Mus musculus coinfected by Toxocara canis and Toxoplasma gondii. Revista do Instituto de Medicina Tropical de São Paulo 56, 353356. https://doi.org/10.1590/S0036-46652014000400014CrossRefGoogle ScholarPubMed
Cox, D and Holland, C (2001a) Relationship between three intensity levels of Toxocara canis larvae in the brain and effects on exploration, anxiety, learning and memory in the murine host. Journal of Helminthology 75, 3341. https://doi.org/10.1079/JOH200028.CrossRefGoogle ScholarPubMed
Cox, D and Holland, C (2001b) Influence of mouse strain, infective dose and larval burden in the brain on activity in Toxocara-infected mice. Journal of Helminthology 75, 2332. https://doi.org/10.1079/JOH200027.CrossRefGoogle ScholarPubMed
de Moura, MQ, de Macedo, MRP, da Silva Terto, WD, da Costa Avila, LF, Leite, FPL, Scaini, CJ, Pinto, NB, de Almeida Capella, G, Strothmann, AL and Villela, MM (2018) Detection of Toxocara canis DNA in tissues of experimentally infected mice. Acta Tropica 187, 5156. https://doi.org/10.1016/j.actatropica.2018.07.017.CrossRefGoogle Scholar
Deacon, RM (2013) Measuring motor coordination in mice. Journal of Visualized Experiments 2013, e2609. https://doi.org/10.3791/2609.Google Scholar
Deshayes, S, Bonhomme, J and de La Blanchardière, A (2016) Neurotoxocariasis: a systematic literature review. Infection 44, 565574. https://doi.org/10.1007/s15010-016-0889-8.CrossRefGoogle ScholarPubMed
Dolinsky, Z, Burright, R, Donovick, P, Glickman, L, Babish, J, Summers, B and Cypess, R (1981) Behavioral effects of lead and Toxocara canis in mice. Science 213, 11421144. DOI: 10.1126/science.7268424.CrossRefGoogle ScholarPubMed
Dunsmore, J, Thompson, R and Bates, I (1983) The accumulation of Toxocara canis larvae in the brains of mice. International Journal for Parasitology 13, 517521. https://doi.org/10.1016/S0020-7519(83)80017-4.CrossRefGoogle ScholarPubMed
Eid, MM, El-Kowrany, SI, Othman, AA, El Gendy, DI and Saied, EM (2015) Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. The Korean Journal of Parasitology 53, 5158. https://doi.org/10.3347/kjp.2015.53.1.51.CrossRefGoogle ScholarPubMed
Evans, WJ, Morley, JE, Argilés, J, Bales, C, Baracos, V, Guttridge, D, Jatoi, A, Kalantar-Zadeh, K, Lochs, H and Mantovani, G (2008) Cachexia: a new definition. Clinical Nutrition 27, 793799. https://doi.org/10.1016/j.clnu.2008.06.013.CrossRefGoogle ScholarPubMed
Fan, CK, Holland, CV, Loxton, K and Barghouth, U (2015) Cerebral toxocariasis: silent progression to neurodegenerative disorders? Clinical Microbiology Reviews 28, 663686. https://doi.org/10.1128/cmr.00106-14.CrossRefGoogle ScholarPubMed
Fan, CK, Lan, HS, Hung, CC, Chung, WC, Liao, CW, Du, WY and Su, KE (2004b) Seroepidemiology of Toxocara canis infection among mountain aboriginal adults in Taiwan. The American Journal of Tropical Medicine and Hygiene 71, 216221. https://doi.org/10.4269/ajtmh.2004.71.216CrossRefGoogle ScholarPubMed
Fan, CK, Liao, CW and Cheng, YC (2013) Factors affecting disease manifestation of toxocarosis in humans: genetics and environment. Veterinary Parasitology 193, 342352. https://doi.org/10.1016/j.vetpar.2012.12.030.CrossRefGoogle ScholarPubMed
Fan, CK, Lin, YH, Du, WY and Su, KE (2003) Infectivity and pathogenicity of 14-month-cultured embryonated eggs of Toxocara canis in mice. Veterinary Parasitology 113, 145155. https://doi.org/10.1016/S0304-4017(03)00046-3.CrossRefGoogle ScholarPubMed
Fan, CK, Lin, YH, Hung, CC, Chang, SF and Su, KE (2004a) Enhanced inducible nitric oxide synthase expression and nitrotyrosine accumulation in experimental granulomatous hepatitis caused by Toxocara canis in mice. Parasite Immunology 26, 273281. https://doi.org/10.1111/j.0141-9838.2004.00708.x.CrossRefGoogle ScholarPubMed
Farjat, JAB, Minvielle, MC, Pezzani, BC and Niedfeld, G (1995) Relationship between parasitical inoculum and immunological parameters in experimental toxocariasis. Zentralblatt für Bakteriologie 282, 465473. https://doi.org/10.1016/S0934-8840(11)80720-6.CrossRefGoogle ScholarPubMed
Farooq, RK, Isingrini, E, Tanti, A, Le Guisquet, A-M, Arlicot, N, Minier, F, Leman, S, Chalon, S, Belzung, C and Camus, V (2012) Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation? Behavioural Brain Research 231, 130137. https://doi.org/10.1016/j.bbr.2012.03.020.CrossRefGoogle ScholarPubMed
Finsterer, J and Auer, H (2013) Parasitoses of the human central nervous system. Journal of Helminthology 87, 257270. https://doi.org/10.1017/S0022149X12000600.CrossRefGoogle ScholarPubMed
Fok, É and Kassai, T (1998) Toxocara canis infection in the paratenic host: a study on the chemosusceptibility of the somatic larvae in mice. Veterinary Parasitology 74, 243259. https://doi.org/10.1016/S0304-4017(97)00086-1.CrossRefGoogle Scholar
Fox, W (1965) Reflex-ontogeny and behavioural development of the mouse. Animal Behaviour 13, 234241. https://doi.org/10.1016/0003-3472(65)90041-2.CrossRefGoogle ScholarPubMed
Frey, A, Di Canzio, J and Zurakowski, D (1998) A statistically defined endpoint titer determination method for immunoassays. Journal of Immunological Methods 221, 3541. https://doi.org/10.1016/S0022-1759(98)00170-7.CrossRefGoogle ScholarPubMed
Garibyan, L and Avashia, N (2013) Research techniques made simple: polymerase chain reaction (PCR). The Journal of Investigative Dermatology 133, e6. https://doi.org/10.1038/jid.2013.1.CrossRefGoogle Scholar
Hamilton, CM, Stafford, P, Pinelli, E and Holland, C (2006) A murine model for cerebral toxocariasis: characterisation of host susceptibility and behaviour. Parasitology 132, 791801. https://doi.org/10.1017/S0031182006009887.CrossRefGoogle ScholarPubMed
Hanh, NTL, Lee, YL, Lin, CL, Chou, CM, Cheng, PC, Quang, HH and Fan, CK (2020) Evidence for asthma in the lungs of mice inoculated with different doses of Toxocara canis. The American Journal of Tropical Medicine and Hygiene 103, 23052314. https://doi.org/10.4269/ajtmh.20-0484.CrossRefGoogle ScholarPubMed
Harkema, L, Youssef, SA and de Bruin, A (2016) Pathology of mouse models of accelerated aging. Veterinary Pathology 53, 366389. https://doi.org/10.1177/0300985815625169.CrossRefGoogle ScholarPubMed
Havasiová-Reiterová, K, Tomašovicová, O and Dubinský, P (1995) Effect of various doses of infective Toxocara canis and Toxocara cati eggs on the humoral response and distribution of larvae in mice. Parasitology Research 81, 1317. https://doi.org/10.1007/BF00932411.CrossRefGoogle ScholarPubMed
Hermes, G, Ajioka, JW, Kelly, KA, Mui, E, Roberts, F, Kasza, K, Mayr, T, Kirisits, MJ, Wollmann, R and Ferguson, DJ (2008) Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. Journal of Neuroinflammation 5, 137. https://doi.org/10.1186/1742-2094-5-48.CrossRefGoogle ScholarPubMed
Heuer, L, Beyerbach, M, Lühder, F, Beineke, A and Strube, C (2015) Neurotoxocarosis alters myelin protein gene transcription and expression. Parasitology Research 114, 21752186. https://doi.org/10.1007/s00436-015-4407-1.CrossRefGoogle ScholarPubMed
Holland, CV and Hamilton, CM (2013) The significance of cerebral toxocariasis: a model system for exploring the link between brain involvement, behaviour and the immune response. Journal of Experimental Biology 216, 7883. https://doi.org/10.1242/jeb.074120.CrossRefGoogle Scholar
Isingrini, E, Camus, V, Le Guisquet, A-M, Pingaud, M, Devers, S and Belzung, C (2010) Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. PloS One 5, e10404. https://doi.org/10.1371/journal.pone.0010404.CrossRefGoogle Scholar
Jacobs, DE, Zhu, X, Gasser, RB and Chilton, NB (1997) PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat. Acta Tropica 68, 191200. https://doi.org/10.1016/S0001-706X(97)00093-4.CrossRefGoogle ScholarPubMed
Janecek, E, Beineke, A, Schnieder, T and Strube, C (2014) Neurotoxocarosis: marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasites & Vectors 7, 113. https://doi.org/10.1186/1756-3305-7-194.CrossRefGoogle Scholar
Janecek, E, Waindok, P, Bankstahl, M and Strube, C (2017) Abnormal neurobehaviour and impaired memory function as a consequence of Toxocara canis-as well as Toxocara cati-induced neurotoxocarosis. PLoS Neglected Tropical Diseases 11, e0005594. https://doi.org/10.1371/journal.pntd.0005594.CrossRefGoogle ScholarPubMed
Janecek, E, Wilk, E, Schughart, K, Geffers, R and Strube, C (2015) Microarray gene expression analysis reveals major differences between Toxocara canis and Toxocara cati neurotoxocarosis and involvement of T. canis in lipid biosynthetic processes. International Journal for Parasitology 45, 495503. https://doi.org/10.1016/j.ijpara.2015.02.009.CrossRefGoogle ScholarPubMed
Kim, MS, Jin, Y and Woo, SJ (2024) Organ-specific Toxocara canis larvae migration and host immune response in experimentally infected mice. Parasites, Hosts and Diseases 62, 243. https://doi.org/10.3347/PHD.23125.CrossRefGoogle ScholarPubMed
Kolbeková, P, Kolářová, L, Větvička, D and Syrůček, M (2011a) Imaging of Toxocara canis larvae labelled by CFSE in BALB/c mice. Parasitology Research 108, 10071014. https://doi.org/10.1007/s00436-010-2145-y.CrossRefGoogle ScholarPubMed
Kolbeková, P, Větvička, D, Svoboda, J, Skírnisson, K, Leissová, M, Syrůček, M, Marečková, H and Kolářová, L (2011b) Toxocara canis larvae reinfecting BALB/c mice exhibit accelerated speed of migration to the host CNS. Parasitology Research 109, 12671278. https://doi.org/10.1007/s00436-011-2371-y.CrossRefGoogle Scholar
Li, M, Lin, R, Chen, H, Sani, R, Song, H and Zhu, X (2007) PCR tools for the verification of the specific identity of ascaridoid nematodes from dogs and cats. Molecular and Cellular Probes 21, 349354. https://doi.org/10.1016/j.mcp.2007.04.004.CrossRefGoogle ScholarPubMed
Liao, CW, Fan, CK, Kao, TC, Ji, DD, Su, KE, Lin, YH and Cho, WL (2008) Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice. BMC Infectious Diseases 8, 115. https://doi.org/10.1186/1471-2334-8-84.CrossRefGoogle ScholarPubMed
Ma, G, Holland, CV, Wang, T, Hofmann, A, Fan, C-K, Maizels, RM, Hotez, PJ and Gasser, RB (2018) Human toxocariasis. The Lancet Infectious Diseases 18, e14e24. https://doi.org/10.1016/S1473-3099(17)30331-6.CrossRefGoogle ScholarPubMed
Ma, G, Rostami, A, Wang, T, Hofmann, A, Hotez, PJ and Gasser, RB (2020) Global and regional seroprevalence estimates for human toxocariasis: a call for action. Advances in Parasitology 109, 275290. https://doi.org/10.1016/bs.apar.2020.01.011.CrossRefGoogle ScholarPubMed
Macháček, T, Leontovyč, R, Šmídová, B, Majer, M, Vondráček, O, Vojtěchová, I, Petrásek, T and Horák, P (2022) Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathogens 18, e1010302. https://doi.org/10.1371/journal.ppat.1010302.CrossRefGoogle ScholarPubMed
Macpherson, CN (2013) The epidemiology and public health importance of toxocariasis: a zoonosis of global importance. International Journal for Parasitology 43, 9991008. https://doi.org/10.1016/j.ijpara.2013.07.004.CrossRefGoogle Scholar
Magnaval, JF, Glickman, LT, Dorchies, P and Morassin, B (2001) Highlights of human toxocariasis. The Korean Journal of Parasitology 39, 111. https://doi.org/10.3347/kjp.2001.39.1.1.CrossRefGoogle ScholarPubMed
Maizels, RM (2013) Toxocara canis: molecular basis of immune recognition and evasion. Veterinary Parasitology 193, 365374. https://doi.org/10.1016/j.vetpar.2012.12.032.CrossRefGoogle ScholarPubMed
Miedel, CJ, Patton, JM, Miedel, AN, Miedel, ES and Levenson, JM (2017) Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β and tau neuropathology. Journal of Visualized experiments. https://doi.org/10.3791/55523.CrossRefGoogle Scholar
Miller, RA, Harper, JM, Galecki, A and Burke, DT (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1, 2229. https://doi.org/10.1046/j.1474-9728.2002.00006.x.CrossRefGoogle ScholarPubMed
Mineur, YS, Prasol, DJ, Belzung, C and Crusio, WE (2003) Agonistic behavior and unpredictable chronic mild stress in mice. Behavior Genetics 33, 513519. https://doi.org/10.1023/A:1025770616068.CrossRefGoogle ScholarPubMed
Novák, J, Panská, L, Macháček, T, Kolářová, L and Horák, P (2017) Humoral response of mice infected with Toxocara canis following different infection schemes. Acta Parasitologica 62, 823835. https://doi.org/10.1515/ap-2017-0099.CrossRefGoogle ScholarPubMed
Ollero, MD, Fenoy, S, Cuéllar, C, Guillén, JL and Del Aguila, C (2008) Experimental toxocariosis in BALB/c mice: effect of the inoculation dose on brain and eye involvement. Acta Tropica 105, 124130. https://doi.org/10.1016/j.actatropica.2007.11.001.CrossRefGoogle ScholarPubMed
Othman, AA, Bruschi, F and Ganna, AA (2014) Helminth parasitic infections of the central nervous system: a diagnostic approach. Journal of the Egyptian Society of Parasitology 44, 5570. https://doi.org/10.21608/jesp.2014.90704.Google ScholarPubMed
Petit, G, Diagne, M, Marechal, P, Owen, D, Taylor, D and Bain, O (1992) Maturation of the filaria Litomosoides sigmodontis in BALB/c mice; comparative susceptibility of nine other inbred strains. Annales de parasitologie humaine et comparee 67, 144150. https://doi.org/10.1051/parasite/1992675144.CrossRefGoogle ScholarPubMed
Pinelli, E, Brandes, S, Dormans, J, Fonville, M, Hamilton, CM and van der Giessen, J (2007) Toxocara canis: effect of inoculum size on pulmonary pathology and cytokine expression in BALB/c mice. Experimental Parasitology 115, 7682. https://doi.org/10.1016/j.exppara.2006.06.002.CrossRefGoogle ScholarPubMed
Rostami, A, Riahi, SM, Fallah Omrani, V, Wang, T, Hofmann, A, Mirzapour, A, Foroutan, M, Fakhri, Y, Macpherson, CN and Gasser, RB (2020) Global prevalence estimates of Toxascaris leonina infection in dogs and cats. Pathogens 9, 503. https://doi.org/10.3390/pathogens9060503.CrossRefGoogle ScholarPubMed
Rostami, A, Riahi, SM, Holland, CV, Taghipour, A, Khalili-Fomeshi, M, Fakhri, Y, Omrani, VF, Hotez, PJ and Gasser, RB (2019) Seroprevalence estimates for toxocariasis in people worldwide: a systematic review and meta-analysis. PLoS Neglected Tropical Diseases 13, e0007809. https://doi.org/10.1371/journal.pntd.0007809.CrossRefGoogle ScholarPubMed
Söndergaard, HP and Theorell, T (2004) A putative role for Toxocara species in the aetiology of multiple sclerosis. Medical Hypotheses 63, 5961. https://doi.org/10.1016/j.mehy.2004.02.014.CrossRefGoogle ScholarPubMed
Springer, A, Heuer, L, Janecek-Erfurth, E, Beineke, A and Strube, C (2019) Histopathological characterization of Toxocara canis-and T. cati-induced neurotoxocarosis in the mouse model. Parasitology Research 118, 25912600. https://doi.org/10.1007/s00436-019-06395-7.CrossRefGoogle Scholar
Strube, C, Heuer, L and Janecek, E (2013) Toxocara spp. infections in paratenic hosts. Veterinary Parasitology 193, 375389. https://doi.org/10.1016/j.vetpar.2012.12.033.CrossRefGoogle ScholarPubMed
Strube, C, Waindok, P, Raulf, MK and Springer, A (2020) Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. Advances in Parasitology 109, 189218. https://doi.org/10.1016/bs.apar.2020.01.006.CrossRefGoogle ScholarPubMed
Vojtechova, I, Machacek, T, Kristofikova, Z, Stuchlik, A and Petrasek, T (2022) Infectious origin of Alzheimer’s disease: amyloid beta as a component of brain antimicrobial immunity. PLoS Pathogens 18, e1010929. https://doi.org/10.1371/journal.ppat.1010929.CrossRefGoogle ScholarPubMed
Wagner, RG and Newton, CR (2009) Do helminths cause epilepsy? Parasite Immunology 31, 697705. https://doi.org/10.1111/j.1365-3024.2009.01128.x.CrossRefGoogle ScholarPubMed
Waindok, P, Janecek-Erfurth, E, Lindenwald, DL, Wilk, E, Schughart, K, Geffers, R and Strube, C (2022) Toxocara canis-and Toxocara cati-induced neurotoxocarosis is associated with comprehensive brain transcriptomic alterations. Microorganisms 10, 177. https://doi.org/10.3390/microorganisms10010177.CrossRefGoogle Scholar
Waindok, P and Strube, C (2019) Neuroinvasion of Toxocara canis-and T. cati-larvae mediates dynamic changes in brain cytokine and chemokine profile. Journal of Neuroinflammation 16, 112. https://doi.org/10.1186/s12974-019-1537-x.CrossRefGoogle Scholar
Supplementary material: File

Bernardová et al. supplementary material

Bernardová et al. supplementary material
Download Bernardová et al. supplementary material(File)
File 23.7 KB