Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T08:05:52.824Z Has data issue: false hasContentIssue false

Significant Factors in the Plerocercoid Environment of Diphyllobothrium latum (Linn.)

Published online by Cambridge University Press:  18 November 2009

Robert Arnold Wardle
Affiliation:
University of Manitoba.

Extract

1. Plerocercoid larval stages of Diphyllobothrium latum (Linn.), in 0·2 molar sodium chloride can tolerate temperature values between −8° and 55°C., the survival time varying from 15 minutes at 54° C. to 60 hours at 20° C., and diminishing gradually from 24+ hours at zero to non-survival at −8°C. The optimum range of values lies between 38° and −2·8° C. It is suggested that the median point of the optimum range approximates to the mean summer temperature of the host fish and that variations in temperature from this mean point restrict the survival time value of the intramuscular plerocercoid phase.

2. They can tolerate concentrations of HCl between 0·3 and 0·001 molar if 0·5 per cent. of pepsin be present, and concentrations of Na2CO2 between 0·2 and 0·001 molar, when 3 per cent. of pancreatin is present, for the length of time they would normally be subject to canine or human gastric and duodenal digestion.

3. They can tolerate the component salts of Ringer-Locke solution when in concentrations between 0·2 and 0·001 molar for periods of time varying with the concentration and with the chemical structure of the salt. The addition of other electrolytes to decimolar NaCl does not increase its value as a medium for the larvae.

4. The behaviour of plerocercoids in electrolyte solutions of 0·2–0·001 molar concentration is essentially similar, and initial period of activity being followed by a period of contraction and latent mobility—which, however, may be omitted—passing into a period of endosmotic immobility and disintegration. It is suggested that activity is stimulated by the influence of absorbed CI' upon muscular irritability and that depression of activity is induced by absorption of the kation of neutral salts or of the whole molecule of acids or alkalies.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1933

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dastre, A. and Stassano, H., 1904.—“Les facteurs de la digestion pancréatique,” Arch. Int. Physiol., Vol. I. (W.L. 1851.)Google Scholar
Dekhuyzen, C., 1905.—“Sur la pression osmotique dans le sang des poissons,” Arch. Néerland. Sci., Vol. X, p. 121. (W.L. 1877.)Google Scholar
Dische, Z., 1926.—“Chemie des Muskels,” Tabulœ Biologicœ, Vol. III, p. 447.Google Scholar
Hamill, J. M., 1906.—“On the mechanism of protection of intestinal worms,” J. Physiol., Vol. XXXIII, pp. 479492. (W.L. 11454.)CrossRefGoogle Scholar
Kjava, Y., 1913.—“Någea iakhtagelser rörande den breda bandmaskens (Bothriocephalus) blås kosk,” Finska LäkSällsk. Handl., Vol. LV, pp. 670707. (W.L. 8436.)Google Scholar
Le Bas, G. Z. L., 1924.—“Experimental Studies on Dibothriocephalus latus in Man,” J. Helminth., Vol. II, pp. 151166.CrossRefGoogle Scholar
Leiper, R. T., 1928.—“A cryptic infection with Dibothriocephalus latus,J. Helminth., Vol. VI, pp. 223226.CrossRefGoogle Scholar
Magath, T. B. and Essex, H. E., 1931.—“Concerning the distribution of Diphyllobothrium latum in North America,” J. Prev. Med. Oshkosh, Wis., Vol. V, pp. 227242. (W.L. 11469.)Google Scholar
Riley, W. A., 1919.—“The longevity of the Fish Tapeworm of Man, Dibothriocephalus latus,” J. Parasit., Vol. V, pp. 193194. (W.L. 11428.)CrossRefGoogle Scholar
Rosemann, R., 1920.—“Zur Physiologie und Pathologie der Säureabsonderung der Magenschleimhaut,” Virchows Arch., Vol. CCXXIX, p. 67. (W.L. 22575.)Google Scholar
Rosen, F., 1918.—“Recherches sur le devéloppement des cestodes. I. Le cyclif évolutif des Bothriocephales,” Bull. Soc. neuchâtel Sci. nat., Vol. XLIII, pp. 163. (W.L. 5299.)Google Scholar
Schopfer, W., 1926.—“Recherches physico-chemiques sur les parasites,” Compt. Rend. Soc. Phys. et Hist. Nat. Geneve, Vol. XLIII, pp. 6467, 101103, 136137.Google Scholar
Scott, J. W., 1913.—“Experiments with tapeworms: I. Some factors producing evagination of a cysticercus,” Biol. Bull. Woods Hole, Vol. XXV, pp. 304311. (W.L. 2975.)CrossRefGoogle Scholar
Seno, H., Kitagawa, M. et Iwamato, S., 1925.—“The effect of continued cold on the viability of the plerocercoid of Dibothriocephalus latus L.,” J. Fish. Bur. Tokyo, Vol. XX, pp. 911. (W.L. 11200.)Google Scholar
Vergeer, T., 1928.—“Dissemination of the Broad Tapeworm by wild carnivora,” Canad. Med. Ass. J., Vol. XIX, pp. 692694. (W.L. 5902.)Google Scholar
Vergeer, T. 1929.—“The Broad Tapeworm in America with suggestions for its control,” J. Infect. Dis., Vol. XLIV, pp. 111. (W.L. 11250.)CrossRefGoogle Scholar
Vialli, M., 1923.—“Ricerche sulla pressione osmotica,” Rend. Ist. Lombardo, Vol. LVI. (W.L. 17838.)Google Scholar
Ward, H. B., 1930.—“The introduction and spread of the Fish Tapeworm (Diphyllobothrium latum) in the United States,” De Lamar Lectures, 1929–1930, Baltimore.Google Scholar
Wardle, R. A., 1932.—“The Cestoda of Canadian Fishes: I. The Pacific Coast Region,” Contr. Canad. Biol., Vol. VII, pp. 223242. (W.L. 6792.)Google Scholar
Weinland, E., 1903.—“Zur Frage weshalb die Wand von Magen und Darm während des Lebens durch die proteolytische Fermente nicht angegriffen wird,” Z. Biol., Vol. XLIV, pp. 4560. (W.L. 23354.)Google Scholar