Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T12:31:25.304Z Has data issue: false hasContentIssue false

Minimum sampling effort for reliable non-invasive estimations of excretion abundance of Elaphostrongylus cervi L1 in red deer (Cervus elaphus) populations

Published online by Cambridge University Press:  01 September 2008

J. Tayce
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), PO Box 535, Ronda de Toledo s.n., Ciudad Real E-13071, Spain College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
P. Acevedo*
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), PO Box 535, Ronda de Toledo s.n., Ciudad Real E-13071, Spain Central Science Laboratory, Sand Hutton, York YO41 1LZ, United Kingdom
J. Vicente
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), PO Box 535, Ronda de Toledo s.n., Ciudad Real E-13071, Spain
C. Gortazar
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), PO Box 535, Ronda de Toledo s.n., Ciudad Real E-13071, Spain
*
*Fax:+34-926295451 E-mail: [email protected]

Abstract

Faecal surveys are commonly used as non-invasive means to evaluate population abundance of animals as well as comparable indexes of prevalence and intensity of diseases between populations, especially macroparasites. While faecal surveys are among one of the simplest means to perform these evaluations, they are time consuming and labour intensive. The present study evaluated 80 red deer (Cervus elaphus) faecal samples collected in two study sites for the presence and abundance of first-stage larvae of the nematode Elaphostrongylus cervi and established pools of samples for epidemiological analysis. The analysis of 20–30 individual samples would produce a reliable estimate of the ‘true’ prevalence, and the error of the smaller sample size only doubled that of the 80 reference samples. The analysis of 5 pools of 5 pellet groups each, or of 4 pools of 10 pellet groups each, provided a reliable estimation of the ‘true’ excretion abundance estimated by the analysis of all 80 samples. These pools comprise a cost-effective and dependable alternative for measuring and obtaining comparable abundances of parasitic faecal excretion stages in red deer populations, which is very valuable for epidemiological and ecological research as well as for management purposes.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acevedo, P., Vicente, J., Alzaga, V. & Gortázar, C. (2005) Relationship between bronchopulmonary nematode larvae and relative abundances of Spanish ibex (Capra pyrenaica hispanica) from Castilla-La Mancha. Journal of Helminthology 79, 113118.CrossRefGoogle ScholarPubMed
Anonymous (1986) Manual of veterinary parasitological laboratory techniques. MAFF/ADAS reference book 418. 3rd edn.160 pp. London, Her Majesty's Stationery Office.Google Scholar
Barnett, V. (2002) Sample survey: principles and methods. 3rd edn.241 pp. London, Arnold Publishers.Google Scholar
Böhm, M., White, P.C.L., Daniels, M.J., Allcroft, D.J., Munro, R. & Hutchings, M.R. (2006) The health of wild red and sika deer in Scotland: an analysis of key endoparasites and recommendations for monitoring disease. The Veterinary Journal 171, 287294.CrossRefGoogle ScholarPubMed
Corbin, E., Vicente, J., Martin-Hernando, M.P., Acevedo, P., Pérez-Rodríguez, P. & Gortazar, C. (2008) Spleen mass as a measure of immune strength in mammals. Mammal Review 38, 108115.CrossRefGoogle Scholar
Côté, S.D., Rooney, T.P., Tremblay, J.P., Dussault, C. & Waller, D.M. (2004) Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics 35, 113147.CrossRefGoogle Scholar
Demiaszkiewicz, A. (1986) Laboratory diagnosis of Protostrongylid infection in Cervidae. Medycyna Weterynaryjna 41, 660663.Google Scholar
Forrester, S.G. & Lankester, M.W. (1997) Extracting Protostrongylid nematode from ungulate faeces. Journal of Wildlife Diseases 33, 511516.CrossRefGoogle Scholar
Gaudernack, G., Halvorsen, O., Skorping, A. & Stokkan, K.A. (1984) Humoral immunity and output of first-stage larvae of Elaphostrongylus rangiferi (Nematoda, Metastrongyloidea) by infected reindeer. Journal of Helminthology 58, 1318.CrossRefGoogle ScholarPubMed
Gortázar, C., Acevedo, P., Ruiz-Fons, F. & Vicente, J. (2006) Disease risks and overabundance of game species. European Journal of Wildlife Research 52, 8187.CrossRefGoogle Scholar
Handeland, K., Gibbons, L.M. & Skorping, A. (2000) Aspects of the life cycle and pathogenesis of Elaphostrongylus cervi in red deer. Journal of Parasitology 86, 10611066.CrossRefGoogle ScholarPubMed
Kutzer, E. & Prosl, H. (1975) Zur Kenntnis von Elaphostrongylus cervi Cameron 1931. 1. Morphologie und Diagnose. Wiener Tierarztliche Monatschrift 62, 258266.Google Scholar
Lankester, M.W. (2001) Extrapulmonary lungworms of cervids. pp. 228278in Samuel, W.M., Pybus, M.J. & Kocan, A.A. (Eds) Parasitic diseases of wild mammals. Iowa, Iowa State University Press.CrossRefGoogle Scholar
Margolis, L., Esch, G.W., Holmes, J.C., Kuris, A.M. & Schad, G.A. (1982) The use of ecological terms in parasitology. Report of an Ad Hoc Committee of the American Society of Parasitologists. Journal of Parasitology 68, 131133.CrossRefGoogle Scholar
Martin, S.W., Meek, A.H. & Willeberg, P. (1987) Veterinary epidemiology. 343 pp. Ames, Iowa, State University Press.Google Scholar
Mason, P.C. (1995) Elaphostrongylus cervi and its close relatives a review of protostrongylids (Nematoda: Metastrongyloidea) with spiny-tailed larvae. Surveillance 22, 1924.Google Scholar
Müller-Graf, C.D.M., Woolhouse, M.E. & Packer, C. (1999) Epidemiology of an intestinal parasite (Spirometra spp.) in two populations of African lions. Parasitology 118, 407415.CrossRefGoogle ScholarPubMed
Patton, S. & Rabinowitz, A. (1994) Felidae in Thailand: a coprological survey. Journal of Wildlife Diseases 30, 472475.CrossRefGoogle ScholarPubMed
Pelletier, F., Page, K.A., Ostiguy, T. & Festa-Bianchet, M. (2005) Fecal counts of lungworm larvae and reproductive effort in bighorn sheep, Ovis canadensis. Oikos 110, 473480.CrossRefGoogle Scholar
Power, M.E., Tillman, D., Estes, J.A., Menge, B.A., Bond, W.J., Mills, L.S., Daily, G., Castilla, J.C., Lubchenco, J. & Paine, R.T. (1996) Challenges in the quest for keystones. BioScience 46, 609620.CrossRefGoogle Scholar
Rezac, P. (1990) Diferenciální larev 1. Stadia hlístic Varestrongylus sagittatus a Elaphostrongylus cervi. Veterinárstvi 40, 311313.Google Scholar
Sams, M.G., Lochmiller, R.L., Quails, C.W. & Leslie, D.M. (1998) Sensitivity of condition indices to changing density in a white-tailed deer population. Journal of Wildlife Diseases 34, 110125.CrossRefGoogle Scholar
Vicente, J. & Gortázar, C. (2001) High prevalence of large spiny-tailed protostrongylid larvae in Iberian red deer. Veterinary Parasitology 96, 165170.CrossRefGoogle ScholarPubMed
Vicente, J., Fierro, Y. & Gortázar, C. (2005) Seasonal dynamics of the faecal excretion of Elaphostrongylus cervi (Nematoda, Metastrongyloidea) first stage larvae in Iberian red deer (Cervus elaphus hispanicus) from South Spain. Parasitology Research 95, 6064.CrossRefGoogle Scholar
Vicente, J., Fernandez de Mera, I.G. & Gortázar, C. (2006) Epidemiology and risk factors analysis of elaphostrongylosis in red deer (Cervus elaphus) from Spain. Parasitology Research 98, 7785.CrossRefGoogle Scholar
Vicente, J., Höfle, U., Fernández-de-Mera, I.G. & Gortazar, C. (2007a) The importance of parasite life history and host density in predicting the impact of infections in red deer. Oecologia 152, 655664.CrossRefGoogle ScholarPubMed
Vicente, J., Perez-Rodriguez, L. & Gortázar, C. (2007b) Sex, age, spleen size, and kidney fat of red deer relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 94, 581587.CrossRefGoogle Scholar
Villanúa, D., Perez-Rodriguez, L., Gortázar, C., Hofle, U. & Vinuela, J. (2006) Avoiding bias in parasite excretion estimates: the effect of sampling time and type of faeces. Parasitology 133, 251259.CrossRefGoogle ScholarPubMed
Williams, C.J. (2001) A critique of methods of sampling and reporting pathogens in populations of fish. Journal of Aquatic Animal Health 13, 300309.2.0.CO;2>CrossRefGoogle Scholar