Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T02:26:19.129Z Has data issue: false hasContentIssue false

Growth rate of the intermediate snail host Galba truncatula influences redial development of the trematode Fascioloides magna

Published online by Cambridge University Press:  28 May 2013

D. Rondelaud
Affiliation:
INSERM U 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France
A. Novobilský
Affiliation:
Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences (SLU), 750 07Uppsala, Sweden
J. Höglund
Affiliation:
Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences (SLU), 750 07Uppsala, Sweden
M. Kašný
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44Prague, Czech Republic
J. Pankrác
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44Prague, Czech Republic
P. Vignoles
Affiliation:
INSERM U 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France
G. Dreyfuss*
Affiliation:
INSERM U 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France
*
*Fax: 33.5.55.43.58.63 E-mail: [email protected]

Abstract

A total of 850 pre-adult Galba truncatula (shell height, 4 mm), originating from four French snail populations differing in shell height at the adult stage (from 6.5 to 12 mm), were individually subjected at 20°C to single-miracidium infections with Fascioloides magna. At day 75 post-exposure, the surviving snails were dissected, and rediae and cercariae were counted. Snail groups differed in shell growth during the experiment: from 1.8 ± 0.4 mm in group A up to 4.0 ± 1.1 mm in group D. The prevalence of F. magna infection, the numbers of free rediae and cercariae significantly increased together with increasing growth of infected snails during the experiment. Group A produced 1–6 first-generation rediae per snail and the mean daughter redia production ranged from 7.5 second-generation rediae (when a single first generation per snail developed) to 2.3 (6 first-generation rediae per snail). In contrast, up to ten first-generation rediae were noted in group D, and each mother redia gave daughter rediae with averages ranging from 1.5 (ten first-generation rediae per snail) to 13 (a single first generation per snail). In conclusion, the development of F. magna in G. truncatula exhibited both inter- and intrapopulation variability, where the development of rediae and cercariae was positively correlated with snail growth.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrous, M., Roumieux, L., Dreyfuss, G., Rondelaud, D. & Mage, C. (1998) Proposition d'une technique simple pour la production métacercarienne de Fasciola hepatica Linné à partir du mollusque Lymnaea truncatula Müller. Revue de Médecine Vétérinaire (Toulouse) 149, 943948.Google Scholar
Barber, I.W. (1962) The pathology produced in the snail Lymnaea columella Say, 1817, by the larval stages of Fasciola hepatica L., 1758. PhD thesis, University of California, Berkeley.Google Scholar
Chroustová, E. (1979) Experimental infection of Lymnaea palustris snails with Fascioloides magna. Veterinary Parasitology 5, 5764.Google Scholar
Dreyfuss, G., Vareille-Morel, C. & Rondelaud, D. (1997) Les habitats de Lymnaea truncatula Müller (Mollusque) le long de deux rivières. Annales de Limnologie-International Journal of Limnology 33, 6772.CrossRefGoogle Scholar
Dunkel, A.M., Rognlie, M.C., Johnson, G.R. & Knapp, S.E. (1996) Distribution of potential intermediate hosts for Fasciola hepatica and Fascioloides magna in Montana, USA. Veterinary Parasitology 62, 6370.Google Scholar
Erhardová, B. (1968) Parthenogenesis of Fascioloides magna (Bassi, 1875) under natural conditions. Folia Parasitologica 15, 233242.Google Scholar
Erhardová-Kotrlá, B. (1971) The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Prague, Academia.Google Scholar
Faltýnková, A., Horáčková, E., Hirtová, L., Novobilský, A., Modrý, D. & Scholz, T. (2006) Is Radix peregra a new intermediate host of Fascioloides magna (Trematoda) in Europe? Field and experimental evidence. Acta Parasitologica 51, 8790.Google Scholar
Graczyk, T.K. & Fried, B. (1999) Development of Fasciola hepatica in the intermediate host. pp. 3146in Dalton, J.P. (Ed.) Fasciolosis. Oxon, CABI Publishing.Google Scholar
Huňová, K., Kašný, M., Hampl, V., Leontovyč, R., Kuběna, A., Mikeš, L. & Horák, P. (2012) Radix spp.: identification of trematode intermediate hosts in the Czech Republic. Acta Parasitologica 57, 273284.Google Scholar
Jabbour-Zahab, R., Pointier, J.P., Jourdane, J., Jarne, P., Oviedo, J.A., Bargues, M.D., Mas-Coma, S., Angles, R., Perera, G., Balzan, C., Khallaayoune, K. & Renaud, F. (1997) Phylogeography and genetic divergence of some lymnaeid snails, intermediate hosts of human and animal fascioliasis, with special reference to lymnaeids from the Bolivian Altiplano. Acta Tropica 64, 191203.CrossRefGoogle ScholarPubMed
Meunier, C., Hurtrez-Boussès, S., Jabbour-Zahab, R., Durand, P., Rondelaud, D. & Renaud, F. (2004) Field and experimental evidence of preferential selfing in the freshwater mollusc Lymnaea truncatula (Gastropoda, Pulmonata). Heredity 92, 316322.Google Scholar
Novobilský, A., Kašný, M., Pankrác, J., Rondelaud, D., Engström, A. & Höglund, J. (2012) Lymnaea fuscus (Pfeiffer 1821) as a potential intermediate host of Fascioloides magna in Europe. Experimental Parasitology 132, 282286.CrossRefGoogle ScholarPubMed
Ollerenshaw, C.B. (1971) Some observations on the epidemiology of fascioliasis in relation to the timing of molluscicide applications in the control of the disease. Veterinary Record 88, 152164.Google Scholar
Rondelaud, D. & Barthe, D. (1980) Fasciola hepatica L.: les formes larvaires non évolutives ou en dégénérescence chez Lymnaea truncatula Müller. Zeitschrift für Parasitenkunde 62, 95104.CrossRefGoogle Scholar
Rondelaud, D. & Barthe, D. (1987) Fasciola hepatica L.: étude de la productivité d'un sporocyste en fonction de la taille de Lymnaea truncatula. Parasitology Research 74, 155160.CrossRefGoogle Scholar
Rondelaud, D., Dreyfuss, G., Vareille-Morel, C. & Moukrim, A. (1997) Les populations de Lymnaea truncatula Müller vivant sur les berges des rivières. Étude expérimentale de leur aptitude à l'infestation par Fasciola hepatica Linné. Revue de Médecine Vétérinaire (Toulouse) 148, 329332.Google Scholar
Rondelaud, D., Novobilský, A., Vignoles, P., Treuil, P., Koudela, B. & Dreyfuss, G. (2006) First studies on the susceptibility of Omphiscola glabra (Gastropoda: Lymnaeidae) from central France to Fascioloides magna. Parasitology Research 98, 299303.Google Scholar
Rondelaud, D., Fousi, M., Vignoles, P., Moncef, M. & Dreyfuss, G. (2007) Optimization of metacercarial production for three digenean species by the use of Petri dishes for raising lettuce-fed Galba truncatula. Parasitology Research 100, 861865.CrossRefGoogle ScholarPubMed
Rondelaud, D., Vignoles, P. & Dreyfuss, G. (2009) La Limnée tronquée, un mollusque d'intérêt médical et vétérinaire. Limoges, PULIM.Google Scholar
Rondelaud, D., Hourdin, P., Vignoles, P., Dreyfuss, G. & Cabaret, J. (2011) The detection of snail host habitats in liver fluke infected farms by use of plant indicators. Veterinary Parasitology 181, 166173.Google Scholar
Sanabria, R., Mouzet, R., Pankrác, J., Djuikwo Teukeng, F.F., Courtioux, N., Novobilský, A., Höglund, J., Kašný, M., Vignoles, P., Dreyfuss, G., Rondelaud, D., & Romero, J. (2013) Lymnaea neotropica and Lymnaea viatrix, potential intermediate hosts for Fascioloides magna. Journal of Helminthology 87, 494500.Google Scholar
Thompson, S.N. (1997) Physiology and biochemistry of snail-larval trematode relationship. pp. 149195in Fried, B. & Graczyk, T.K. (Eds) Advances in trematode biology. Boca Raton, CRC Press.Google Scholar
Vignoles, P., Dreyfuss, G. & Rondelaud, D. (2002) Larval development of Fasciola hepatica in experimental infections: variations with populations of Lymnaea truncatula. Journal of Helminthology 76, 179183.Google Scholar
Vignoles, P., Novobilský, A., Rondelaud, D., Bellet, V., Treuil, P., Koudela, B. & Dreyfuss, G. (2006) Cercarial production of Fascioloides magna in the snail Galba truncatula (Gastropoda: Lymnaeidae). Parasitology Research 98, 462467.CrossRefGoogle ScholarPubMed
Vignoles, P., Rondelaud, D. & Dreyfuss, G. (2011) Characteristics of Fasciola hepatica infections in Galba truncatula originating from riverbank populations. Journal of Helminthology 85, 2832.Google Scholar
Wilson, R.A. & Denison, J. (1980) The parasitic castration and gigantism of Lymnaea truncatula infected with the larval stages of Fasciola hepatica. Zeitschrift für Parasitenkunde 61, 109119.Google Scholar
Zischke, J.A. (1967) Redial populations of Echinostoma revolutum developing in snails of different sizes. Journal of Parasitology 53, 12001204.Google Scholar