Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T19:25:35.804Z Has data issue: false hasContentIssue false

Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs

Published online by Cambridge University Press:  12 April 2024

A.D.M. Latham*
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
R. Poulin
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
*
*Fax: +64 3 479 7584 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of acanthocephalan parasites (profilicollis spp.) on the hiding behaviour during low tide of two species of shore crabs (intermediate hosts), Macrophthalmus hirtipes (Brachyura: Ocypodidae) and Hemigrapsus crenulatus (Brachyura: Grapsidae), was examined at Blueskin Bay, South Island, New Zealand. Exposed M. hirtipes were found to have significantly higher infection levels than did hidden conspecifics. This pattern was not observed for H. crenulatus. Mean cystacanth numbers were found to be considerably higher in M. hirtipes than H. crenulatus. Crabs exposed at low tide are at a greater risk of predation by definitive shorebird hosts than are hidden conspecifics. Preferential manipulation of one intermediate host species over another could influence diversity within ecosystems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2002

References

Ayling, A.M. (1981) The role of biological disturbance in temperate subtidal encrusting communities. Ecology 62, 830847.CrossRefGoogle Scholar
Bakker, T.C.M., Mazzi, D. & Zala, S. (1997) Parasiteinduced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78, 10981104.CrossRefGoogle Scholar
Bethel, W.M. & Holmes, J.C. (1973) Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. Journal of Parasitology 59, 945956.CrossRefGoogle Scholar
Brockerhoff, A.M. & Smales, L.R. (2002) Profilicollis novaezelandensis n. sp. (Polymorphidae) and two other acanthocephalan parasites from shore birds (Haematopodidae and Scolopacidae) in New Zealand, with records of two species in intertidal crabs (Decapoda: Grapsidae, Ocypodidae). Systematic Parasitology 52, 5556.CrossRefGoogle Scholar
Haye, P.A. & Ojeda, F.P. (1998) Metabolic and behavioral alterations in the crab Hemigrapsus crenulatus (Milne- Edwards 1837) induced by its acanthocephalan parasite Profilicollis antarcticus (Zdzitowiecki 1985). Journal of Experimental Marine Biology and Ecology 228, 7382.CrossRefGoogle Scholar
Helluy, S. (1984) Relations hô tes–parasites du trématode Microphallus papillorobustus (Rankin 1940). III. Facteurs impliqués dans les modifications du comportement des Gammarus hô tes intermédiaires et tests de prédation. Annales de Parasitologie Humaine et Comparée 59, 4156.CrossRefGoogle Scholar
Helluy, S.& Holmes, J.C. (1990) Serotonin, octopamine, and the clinging behaviour induced by the parasite Polymorphus paradoxus (Acanthocephala) in Gammarus lacustris (Crustacea). Canadian Journal of Zoology 68, 12141220.CrossRefGoogle Scholar
Hindsbo, O. (1972) Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333.CrossRefGoogle Scholar
Hudson, P.J. & Greenman, J. (1998) Competition mediated by parasites: biological and theoretical progress. Trends in Ecology and Evolution 13, 387390.CrossRefGoogle ScholarPubMed
Lafferty, K.D. (1992) Foraging on prey that are modified by parasites. American Naturalist 140, 854867.CrossRefGoogle Scholar
Latham, A.D.M. & Poulin, R. (2001) Effect of acanthocephalan parasites on the behaviour and coloration of the mud crab Macrophthalmus hirtipes (Brachyura: Ocypodidae). Marine Biology 139, 11471154.Google Scholar
Latham, A.D.M. & Poulin, R. (in press a) Field evidence of parasite-induced mortality in three species of New Zealand shore crabs (Brachyura). Marine Biology.Google Scholar
Latham, A.D.M. & Poulin, R. (in press b) New records of gastrointestinal helminths from the southern blackbacked gull (Larus dominicanus) in New Zealand. New Zealand Journal of Zoology.Google Scholar
McCurdy, D.G., Forbes, M.R. & Boates, J.S. (1999) Evidence that the parasitic nematode Skrjabinoclava manipulates host Corophium behaviour to increase transmission to the sandpiper, Calidris pusilla. Behavioral Ecology 10, 351357.CrossRefGoogle Scholar
McLay, C.L. (1988) Crabs of New Zealand. Auckland University Leigh Marine Laboratory Bulletin 22..Google Scholar
Minchella, D.J. & Scott, M.E. (1991) Parasitism: a cryptic determinant of animal community structure. Trends in Ecology and Evolution 6, 250254.CrossRefGoogle ScholarPubMed
Moore, J. (1984) Altered behavioral responses in intermediate hosts: an acanthocephalan parasite strategy. American Naturalist 123, 572577.CrossRefGoogle Scholar
Nickol, B.B. (1985) Epizootiology. pp. 307346 in Crompton, D.W.T. & Nickol, B.B. (Eds) Biology of the Acanthocephala. Cambridge, Cambridge University Press.Google Scholar
Nye, P.A. (1974) Burrowing and burying by the crab Macrophthalmus hirtipes. New Zealand Journal of Marine and Freshwater Research 8, 243254.CrossRefGoogle Scholar
Poulin, R. (1998) Evolutionary ecology of parasites: from individuals to communities. London, Chapman & Hall.Google Scholar
Poulin, R. (1999) The functional importance of parasites in animal communities: many roles at many levels? International Journal for Parasitology 29, 903914.CrossRefGoogle ScholarPubMed
Pulgar, J., Aldana, M., Vergara, E. & George-Nascimento, M. (1995) La conducta de la jaiba estuarina Hemigrapsus crenulatus (Milne-Edwards 1837) en relación al parasitismo por el acantocefalo Profilicollis antarcticus (Zdzitowiecki 1985) en el sur de Chile. Revista Chilena de Historia Natural 68, 439450.Google Scholar
Thomas, F.& Poulin, R. (1998) Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution or phylogenetic inheritance? Parasitology 116, 431436.CrossRefGoogle ScholarPubMed
Thomas, F., Renaud, F., Rousset, F., Cézilly, F.& de Meeûs, T. (1995) Differential mortality of two closely related host species induced by one parasite. Proceedings of the Royal Society of London Series B 260, 349352.Google Scholar
Williams, B.G., Naylor, E. & Chatterton, T.D. (1985) The activity patterns of New Zealand mud crabs under field and laboratory conditions. Journal of Experimental Marine Biology and Ecology 89, 269282.CrossRefGoogle Scholar