Article contents
Crowding in the first intermediate host does not affect infection probability in the second host in two helminths
Published online by Cambridge University Press: 14 February 2018
Abstract
When many worms co-infect the same host, their average size is often reduced. This negative density-dependent growth is called the crowding effect. Crowding has been reported many times for worms in their intermediate hosts, but rarely have the fitness consequences of crowding been examined. This study tested whether larval crowding reduces establishment success in the next host for two parasites with complex life cycles, the nematode Camallanus lacustris and the cestode Schistocephalus solidus. Infected copepods, the first host, were fed to sticklebacks, the second host. Fish received a constant dose, but the infection intensity in copepods was varied (e.g. giving two singly infected copepods or one doubly infected copepod). Worms from higher-intensity infections did not have significantly reduced infection success in fish. However, crowded treatments had a disproportionate number of low and high infection rates, and although this trend was not significant, it hints at the possibility that multiple worms within a copepod are more likely to either all infect or all die when transmitted to the next host. These results indicate that a smaller larval size due to crowding need not reduce the establishment probability of a worm in the next host.
- Type
- Research Paper
- Information
- Copyright
- Copyright © Cambridge University Press 2018
Footnotes
Current address: Humboldt University, Molecular Parasitology, Philippstr. 13, Haus 14, 10115 Berlin, Germany.
References
- 2
- Cited by