Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T02:00:02.248Z Has data issue: false hasContentIssue false

A closer look at the morphological and molecular diversity of Neoechinorhynchus (Acanthocephala) in Middle American cichlids (Osteichthyes: Cichlidae), with the description of a new species from Costa Rica

Published online by Cambridge University Press:  19 December 2018

C.D. Pinacho-Pinacho*
Affiliation:
Investigador Cátedras CONACyT, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz 91070, Mexico
A.L. Sereno-Uribe
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, C. P. 04510, Ap. Postal 70-153, Ciudad Universitaria, Ciudad de Mexico, Mexico
M. García-Varela
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, C. P. 04510, Ap. Postal 70-153, Ciudad Universitaria, Ciudad de Mexico, Mexico
G. Pérez-Ponce de León
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, C. P. 04510, Ap. Postal 70-153, Ciudad Universitaria, Ciudad de Mexico, Mexico
*
Author for correspondence: C.D. Pinacho-Pinacho E-mail: [email protected]

Abstract

Neoechinorhynchus is one of the most speciose genera of acanthocephalans, with approximately 116 described species. A recent study, aimed at establishing the genetic diversity of Neoechinorhynchus in Middle American freshwater fishes, validated nine species molecularly and morphologically and revealed the existence of 10 putative candidate species. Neoechinorhynchus golvani, a parasite commonly found in cichlids throughout Middle America with an allegedly large intraspecific morphological variability, was found to represent a species complex; species delimitation methods uncovered three additional genetic lineages. Here, we re-analyse the morphological and molecular data for N. golvani species complex infecting cichlids in that geographical area. A multivariate analysis of variance (MANOVA) was conducted particularly for the length of apical, middle and posterior hooks of the species/lineages of Neoechinorhynchus in cichlids, revealing morphological variation in the length of apical hooks for Lineage 8, although no morphological distinction was observed for Lineages 9 and 10. A new concatenated phylogenetic analysis of one mitochondrial and two ribosomal DNA genes was used to further corroborate the species delimitation among lineages; Neoechinorhynchus Lineage 8 was found to be morphologically and genetically distinct from its sister taxa, N. golvani and other two undescribed genetic lineages, and is formally described as a new species. Neoechinorhynchus costarricense n. sp. is described from the intestines of eight species of cichlids in Costa Rica. The new species is distinguished from the other species/lineages of Neoechinorhynchus in cichlids mainly by the size of the apical hooks of the proboscis.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre-Macedo, L et al. (2001) Some adult endohelminths parasitizing freshwater fishes from the Atlantic drainages of Nicaragua. Comparative Parasitology 68, 190195.Google Scholar
Amin, OM (2002) Revision of Neoechinorhynchus Stiles and Hassall, 1905 (Acanthocephala: Neoechinorhynchidae) with keys to 88 species in two subgenera. Systematic Parasitology 53, 118.Google Scholar
Amin, OM (2013) Classification of the Acanthocephala. Folia Parasitologica 60, 273305.Google Scholar
Amin, OM and Heckmann, R (2009) Description of Neoechinorhynchus (Neoechinorhynchus) buckneri n. sp. from the blacktailed redhorse Moxostoma poecilurum (Catostomidae) in the Tchoutacabouffa River, Mississippi, with a key to species of Neoechinorhynchus with different dorsoventral body wall thickness. Comparative Parasitology 76, 154161.Google Scholar
Barger, MA, Thatcher, EV and Nickol, BB (2004) A new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from a red-eared slider (Trachemys scripta elegans) in Mexico. Comparative Parasitology 71, 13.Google Scholar
Blouin, M (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology 32, 527531.Google Scholar
Choudhury, A, García-Varela, M and Pérez-Ponce de León, G (2017) Parasites of freshwater fishes and the Great American Biotic Interchange: a bridge too far? Journal of Helminthology 91, 174196.Google Scholar
De la Maza-Benignos, M et al. (2015) Phylogeographic analysis of genus Herichthys (Perciformes: Cichlidae), with descriptions of Nosferatu new genus and H. tepehua n. sp. Hydrobiologia 748, 201231.Google Scholar
García-Prieto, L et al. (2010) Checklist of the Acanthocephala in wildlife vertebrates of Mexico. Zootaxa 2419, 150.Google Scholar
Hernández-Orts, JS et al. (2012) Breizacanthus aznari sp. n. (Acanthocephala: Arhythmacanthidae) from the banded cusk-eel Raneya brasiliensis (Ophidiiformes: Ophidiidae) from the Patagonian coast in Argentina. Folia Parasitologica 59, 264271.Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Phylogenetic and Evolution 33, 18701874.Google Scholar
Maddison, WP and Maddison, DR (2015) Mesquite: a modular system for evolutionary analysis. Version 3.04: http://mezqiteproject.org.Google Scholar
Martínez-Aquino, A et al. (2009) Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. Journal of Parasitology 95, 10401047.Google Scholar
Monks, S, Pulido-Flores, G and Violante-Gonzalez, J (2011) New species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in Dormitator latifrons (Perciformes: Eleotridae) from the Pacific Coast of Mexico. Comparative Parasitology 78, 2128.Google Scholar
Pérez-Ponce de León, G and Choudhury, A (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the research for patterns and processes. Journal of Biogeography 32, 645649.Google Scholar
Pérez-Ponce de León, G and Choudhury, A (2010) Parasite inventories and DNA-based taxonomy: lessons from helminths of freshwater fishes in a megadiverse country. Journal of Parasitology 96, 236244.Google Scholar
Pérez-Ponce de León, G and Poulin, R (2018) An updated look at the uneven distribution of cryptic diversity among parasitic helminths. Journal of Helminthology 92, 197202.Google Scholar
Pérez-Ponce de León, G et al. (2016) Species delimitation in trematodes using DNA sequences: middle-American Clinostomum as a case study. Parasitology 143, 17731789.Google Scholar
Pinacho-Pinacho, CD, Pérez-Ponce de León, G and García-Varela, M (2012) Description of a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae), a parasite of Dormitator latifrons from southwestern Mexico, based on morphological and molecular characters. Parasitology International 61, 634644.Google Scholar
Pinacho-Pinacho, CD, Sereno-Uribe, AL and García-Varela, M (2014) Morphological and molecular data reveal a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from Dormitator maculatus in the Gulf of Mexico. Parasitology International 63, 763771.Google Scholar
Pinacho-Pinacho, CD et al. (2015) Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA. Zootaxa 3985, 98116.Google Scholar
Pinacho-Pinacho, CD et al. (2018) A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree based species delimitation methods: ten cryptic species of Neoechinorhynchus in Middle America freshwater fishes. Molecular Phylogenetics and Evolution 127, 3045.Google Scholar
Posada, D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.Google Scholar
Rambaut, A and Drummond, AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Razo-Mendivil, U et al. (2010) Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. International Journal for Parasitology 70, 471486.Google Scholar
Ronquist, F et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.Google Scholar
Rosas-Valdez, R, Choudhury, A and Pérez-Ponce de León, G (2011) Molecular prospecting for cryptic species in Phyllodistomum lacustri (Platyhelminthes, Gorgoderidae). Zoologica Scripta 40, 296305.Google Scholar
Salgado-Maldonado, G (1978) Acantocéfalos de peces IV. Descripción de dos especies nuevas de Neoechinorhynchus Hamann, 1892 (Acanthocephala: Neoechinorhynchidae) y algunas consideraciones sobre este género. Anales del Instituto de Biología, Universidad Nacional Autónoma de México 49, 3548.Google Scholar
Salgado-Maldonado, G (2013) Redescription of Neoechinorhynchus (Neoechinorhynchus) golvani Salgado-Maldonado, 1978 (Acanthocephala: Neoechinorhynchidae) and description of a new species from freshwater cichlids (Teleostei: Cichlidae) in Mexico. Parasitology Research 112, 18911901.Google Scholar
Sandlund, OT et al. (2010) A survey of freshwater fishes and their macroparasites in the Guanacaste Conservation Area (ACG), Costa Rica. Norwegian Institute for Nature Research (NINA) Report 635, Trondheim.Google Scholar
Smales, LR (2013) A review of the genus Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from Australia with the description of two new species. Journal of Parasitology 99, 11061112.Google Scholar
StatSoft Inc (2005) STATISTICA (data analysis software system), version 7.1. www.statsoft.com.Google Scholar
Thompson, J, Higgins, D and Gibson, T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar