Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:27:37.506Z Has data issue: false hasContentIssue false

Analysis of lead pollution levels within an urban ecosystem using the cestode Hymenolepis diminuta and its rat hosts as bioindicators

Published online by Cambridge University Press:  11 October 2017

M.A. Tripodi*
Affiliation:
Laboratorio de Ecología de Roedores Urbanos, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Núñez, Buenos Aires, Argentina
D. Hancke
Affiliation:
Laboratorio de Ecología de Roedores Urbanos, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Núñez, Buenos Aires, Argentina
O.V. Suarez
Affiliation:
Laboratorio de Ecología de Roedores Urbanos, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Núñez, Buenos Aires, Argentina
*
Author for correspondence: M.A. Tripodi, E-mail: [email protected]

Abstract

The overall goal of this study was to use the Rattus spp./Hymenolepis diminuta model to assess environmental lead pollution in different landscape units of an urban ecosystem. Rats of the genus Rattus were collected from three shanty towns and three residential neighbourhoods of the city of Buenos Aires. Concentrations of lead in the livers of wild rats and in their parasite H. diminuta were measured using inductively coupled plasma mass spectrometry (ICP-MS). The landscape unit and tissue type had a significant effect on lead concentration, being higher in residential neighbourhoods as well as in H. diminuta tissue. Nevertheless, no significant differences were found for the mean lead concentration in livers between uninfected and infected rats. Since the available information describing heavy-metal pollution within the city of Buenos Aires is scarce, the results of this study allow us to update data about the extent of biologically available lead contamination. Considering that rats and H. diminuta are distributed worldwide, this monitoring system for lead pollution might be applied successfully in other urban ecosystems.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Quraishy, S, Gewik, MM and Abdel-Baki, A-AS (2014) The intestinal cestode Hymenolepis diminuta as a lead sink for its rat host in the industrial areas of Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences 21, 387390.Google Scholar
ATSDR (Agency for Toxic Substances and Disease Registry) (2007) Toxicological profile for lead. Atlanta, Georgia, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services.Google Scholar
Baker, S, Herrchen, M, Hund-Rinke, K, Klein, W, Kördel, W, Peijnenburg, W and Rensing, C (2003) Underlying issues including approaches and information needs in risk assessment. Ecotoxicology and Environmental Safety 56, 619.Google Scholar
Beeby, A (2001) What do sentinels stand for? Environmental Pollution 112, 285298.Google Scholar
Bortey-Sam, N, Nakayama, SM, Ikenaka, Y, Akoto, O, Baidoo, E, Mizukawa, H and Ishizuka, M (2016) Heavy metals and metalloid accumulation in livers and kidneys of wild rats around gold-mining communities in Tarkwa, Ghana. Journal of Environmental Chemistry and Ecotoxicology 8, 5868.Google Scholar
Brenner, N and Schmid, C (2014) The ‘urban age' in question. International Journal of Urban and Regional Research 38, 731755.Google Scholar
Čadková, Z, Miholova, D, Száková, J, Valek, P, Jankovska, I and Langrova, I (2014) Is the tapeworm able to affect tissue Pb-concentrations in white rat? Parasitology 141, 826836.Google Scholar
Cavia, R, Cueto, GR and Suárez, OV (2009) Changes in rodent communities according to the landscape structure in an urban ecosystem. Landscape and Urban Planning 90, 1119.Google Scholar
Ceruti, R, Ghisleni, G, Ferretti, E, Cammarata, S, Sonzogni, O and Scanziani, E (2002) Wild rats as monitors of environmental lead contamination in the urban area of Milan, Italy. Environmental Pollution 117, 255259.Google Scholar
Di Rienzo, J, Casanoves, F, Balzarini, M, Gonzalez, L, Tablada, M and Robledo, CW (2015) InfoStat versión 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at http://www.infostat.com.ar (accessed 26 August 2016).Google Scholar
Eira, C, Torres, J, Vingada, J and Miquel, J (2005) Concentration of some toxic elements in Oryctolagus cuniculus and in its intestinal cestode Mosgovoyia ctenoides, in Dunas de Mira (Portugal). Science of the Total Environment 346, 8186.Google Scholar
Feng, AYT and Himsworth, CG (2014) The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems 17, 149162.Google Scholar
Fernández, MS, Cavia, R, Cueto, GR and Suárez, OV (2007) Implementation and evaluation of an integrated program for rodent control in a Shantytown of Buenos Aires City, Argentina. EcoHealth 4, 271277.Google Scholar
Hancke, D and Suárez, OV (2016) Infection levels of the cestode Hymenolepis diminuta in rat populations from Buenos Aires, Argentina. Journal of Helminthology 90, 199205.Google Scholar
Horáková, B, Čadková, Z, Száková, J and Jankovská, I (2017) The identification of risk and essential elements along the strobila of the rat tapeworm Hymenolepis diminuta. Journal of Helminthology, 91, 555560. doi:10.1017/S0022149X16000535.Google Scholar
INDEC (Instituto Nacional de Estadistica y Censos de la Republica Argentina) (2010) Censo Nacional de Población, Hogares y Viviendas 2010. Instituto Nacional de Estadistica y Censos de la Republica Argentina. Available at http://www.indec.gov.ar/censos_total_pais.asp?id_tema_1=2&id_tema_2=41&id_tema_3=135&t=3&s=0&c=2010 (accessed 7 September 2016).Google Scholar
Jankovská, I, Miholová, D, Bejček, V, Vadlejch, J, Šulc, M, Száková, J and Langrová, I (2010a) Influence of parasitism on trace element contents in tissues of red fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda). Archives of Environmental Contamination and Toxicology 58, 469477.Google Scholar
Jankovská, I, Vadlejch, J, Száková, J, Miholová, D, Kunc, P, Knížková, I and Langrová, I (2010b) Experimental studies on the lead accumulation in the cestode Moniezia expansa (Cestoda: Anoplocephalidae) and its final host (Ovis aries). Ecotoxicology 19, 928932.Google Scholar
Lavado, RS, Rodríguez, MB, Scheiner, JD, Taboada, MA, Rubio, G, Alvarez, R, Alconada, M and Zubillaga, MS (1998) Heavy metals in soils of Argentina: comparison between urban and agricultural soils. Communications in Soil Science and Plant Analysis 29, 19131917.Google Scholar
López, SC, Perelman, PE, Rivara, M, Castro, MA and Faggi, A (2006) Características del suelo y concentración de metales a lo largo de un gradiente de urbanización en Buenos Aires, Argentina. Multequina 15, 6980.Google Scholar
Mattalloni, M, De Giovanni, L and Virgolini, MB (2014) Algo de plomo es demasiado plomo para los organismos en desarrollo? [Is a trace of lead too much lead for developing organisms?]. Bitácora Digital, 2.Google Scholar
Meyer, PA, Brown, MJ and Falk, H (2008) Global approach to reducing lead exposure and poisoning. Mutation Research/Reviews in Mutation Research 659, 166175.Google Scholar
Moore, M, Gould, P and Keary, BS (2003) Global urbanization and impact on health. International Journal of Hygiene and Environmental Health 206, 269278.Google Scholar
Nakayama, SM, Ikenaka, Y, Hamada, K, Muzandu, K, Choongo, K, Yabe, J, Umemura, T and Ishizuka, M (2013) Accumulation and biological effects of metals in wild rats in mining areas of Zambia. Environmental Monitoring and Assessment 185, 49074918.Google Scholar
Oyoo-Okoth, E, Admiraal, W, Osano, O, Kraak, MHS, Were-Kogogo, PJA, Gichuki, J, Ngure, V, Makwali, J and Ogwai, C (2012) Dynamics of metal uptake and depuration in a parasitized cyprinid fish (Rastrineobola argentea). Aquatic Toxicology 124–125, 3440.Google Scholar
Perelman, P, Castro, M, Navarro, L, Rechi, M, Arriaga, M, López, S, Carretero, EM and Faggi, A (2006) Análisis multielemental de cortezas de fresno (Fraxinus pennsylvanica) a lo largo de un gradiente urbano-periurbano en la metrópolis de Buenos Aires. Revista del Museo Argentino de Ciencias Naturales Nueva Serie 8, 231236.Google Scholar
Ratto, S, Marceca, E, Moscatelli, G, Abbruzese, D, Bardi, H, Bossi, M, Bres, P, Cordón, G, Di Nano, M, Murruni, L, Potarsky, K and Williams, F (2004) Evaluación de la contaminación orgánica e inorgánica en un suelo aluvial de la costa del Riachuelo, Buenos Aires, Argentina. Ecologia Austral 14, 179190.Google Scholar
Ratto, SE, Marbán, LG, González, MG and Giuffré de López Camelo, LL (2006) Calidad de suelos en áreas urbanas de la ciudad de Buenos Aires. el caso del parque Indoamericano. Revista de la Facultad de Agronomia 26, 3946.Google Scholar
Riggs, MR, Lemly, AD and Esch, GW (1987) The growth, biomass, and fecundity of Bothriocephalus acheilognathi in a North Carolina cooling reservoir. Journal of Parasitology 73, 893900.Google Scholar
Scheef, G, Sures, B and Taraschewski, H (2000) Cadmium accumulation in Moniliformis moniliformis (Acanthocephala) from experimentally infected rats. Parasitology Research, 86, 688691.Google Scholar
Schludermann, C, Konecny, R, Laimgruber, S, Lewis, J, Schiemer, F, Chovanec, A and Sures, B (2003) Fish macroparasites as indicators of heavy metal pollution in river sites in Austria. Parasitology 126, S61S69.Google Scholar
Siddall, R and Sures, B (1998) Uptake of lead by Pomphorhynchus laevis cystacanths in Gammarus pulex and immature worms in chub (Leuciscus cephalus). Parasitology Research 84, 573577.Google Scholar
Smichowski, P, Gómez, DR, Dawidowski, LE, Giné, MF, Bellato, ACS and Reich, SL (2004) Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques. Journal of Environmental Monitoring 6, 286294.Google Scholar
Stankovic, S and Stankovic, AR (2013) Bioindicators of toxic metals. pp. 151228 in Lichtfouse, E, Schwarzbauer, J and Robert, D (Eds) Green materials for energy, products and depollution. Dordrecht, Netherlands, Springer.Google Scholar
Sures, B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology 20, 170177.Google Scholar
Sures, B and Reimann, N (2003) Analysis of trace metals in the Antarctic host–parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biology 26, 680686.Google Scholar
Sures, B, Siddall, R and Taraschewski, H (1999) Parasites as accumulation indicators of heavy metal pollution. Parasitology Today 15, 1621.Google Scholar
Sures, B, Jürges, G and Taraschewski, H (2000) Accumulation and distribution of lead in the archiacanthocephalan Moniliformis moniliformis from experimentally infected rats. Parasitology 121, 427433.Google Scholar
Sures, B, Grube, K and Taraschewski, H (2002) Experimental studies on the lead accumulation in the cestode Hymenolepis diminuta and its final host, Rattus norvegicus. Ecotoxicology 11, 365368.Google Scholar
Sures, B, Scheible, T, Bashtar, A and Taraschewski, H (2003) Lead concentrations in Hymenolepis diminuta adults and Taenia taeniaeformis larvae compared to their rat hosts (Rattus norvegicus) sampled from the city of Cairo, Egypt. Parasitology 127, 483487.Google Scholar
Teimoori, S, Yaraghi, AS, Makki, MS, Shahbazi, F, Nazmara, S, Rokni, MB, Mesdaghinia, A, Moghaddam, AS, Hosseini, M and Rakhshanpour, A (2014) Heavy metal bioabsorption capacity of intestinal helminths in urban rats. Iranian Journal of Public Health 43, 310315.Google Scholar
Thielen, F, Zimmermann, S, Baska, F, Taraschewski, H and Sures, B (2004) The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution 129, 421429.Google Scholar
Torres, J, de Lapuente, J, Eira, C and Nadal, J (2004) Cadmium and lead concentrations in Gallegoides arfaai (Cestoda: Anoplocephalidae) and Apodemus sylvaticus (Rodentia: Muridae) from Spain. Parasitology Research 94, 468470.Google Scholar
Torres, J, Foronda, P, Eira, C, Miquel, J and Feliu, C (2010) Trace element concentrations in Raillietina micracantha in comparison to its definitive host, the feral pigeon Columba livia in Santa Cruz de Tenerife (Canary Archipelago, Spain). Archives of Environmental Contamination and Toxicology 58, 176182.Google Scholar
Torres, J, Eira, C, Miquel, J, Foronda, P and Feliu, C (2011) Cadmium and lead concentrations in Moniliformis moniliformis (Acanthocephala) and Rodentolepis microstoma (Cestoda), and in their definitive hosts, Rattus rattus and Mus domesticus in El Hierro (Canary Archipelago, Spain). Acta Parasitologica 56, 320324.Google Scholar
Vidal-Martínez, VM and Wunderlich, AC (2017) Parasites as bioindicators of environmental degradation in Latin America: a meta-analysis. Journal of Helminthology 91, 165173.Google Scholar
Vijayalakshmi, V, Ramalingam, K and Satyaprema, V (2003) Distribution of trace metals in different proglottid regions of Avitellina lahorea (Woodlands, 1927) and serum of sheep. Journal of Parasitic Diseases 27, 113118.Google Scholar
Way, CA and Schroder, GD (1982) Accumulation of lead and cadmium in wild populations of the commensal rat, Rattus norvegicus. Archives of Environmental Contamination and Toxicology 11, 407417.Google Scholar