The distribution of temperature throughout an ice sheet has been considered, taking into account the influence of ice movement as well as other items previously considered, such as conduction, the geothermal outflow of heat and heat generated by ice movement. By making certain simplifying assumptions, a quantitative method of estimating the temperature distribution near the centre of an ice sheet has been put forward.
It is shown that even a small mean annual accumulation will have considerable effect on the temperature distribution in a large ice sheet. For a moderate rate of accumulation a substantial fraction of the total thickness of ice at the centre of a large ice sheet may be isothermal at the prevailing surface ice temperature. Under these conditions at some distance from the centre, the change in the surface ice temperature with elevation may produce a temperature gradient opposite to normal, that is the temperature falls with increasing depth below the surface, due to the outward movement of the ice. Observed temperature gradients on ice sheets fit the proposed hypotheses roughly, but it appears that climatic change should also be taken into account.
It is suggested that a rise from temperatures below melting point at the base of ice sheets may provide an explanation of the occasional catastrophic advances of certain glaciers.