Data of the heat balance measured during EGIG 1959 and 1967 are applied to calculate the shift in equilibrium line due to climatic changes. The analysis follows Kuhn’s algorithm by determining from the data: (i) response of the net radiation balance due to changes in air temperature, cloudiness, and albedo, (ii) the response of the sensible heat flux due to changes in air temperature, (iii) the altitudinal gradients of air temperature and cumulative accumulation, (iv) the duration of the ablation season, and (v) the significance of superimposed ice. The shift of the equilibrium line due to changes in cloudiness is negligible compared to that which is caused by changes in temperature. The formation of superimposed ice, however, influences the result considerably. The shift of the equilibrium line amounts to +77 m K−1 at constant cloudiness and –4 m per 1/10 cloudiness at constant temperature.