Mean multi-year values of the components of external mass and energy exchange in the ice sheet, moisture, radiation, and heat balances in the system Antarctic ice sheet/atmosphere have been estimated by various methods.
The major features of the above-mentioned balances have been determined as absolute and relative values. For the moisture balance, income of advective moisture is equal to 100%; loss due to accumulation of moisture in the ice sheet is 83%, due to sink into the atmosphere is 15%, and sink from the ice sheet surface is 2%. As for the radiation balance it has been found that income due to radiation at the top of the atmosphere and absorbed by the atmosphere long-wave radiation are 57% and 43%, respectively; loss due to reflected short-wave radiation is 35%, atmospheric long-wave radiation is 78%, and net outgoing radiation from the surface is 9%. Heat budget components have been found as follows: income due to absorbed short-wave radiation is 49%, advection of heat is 40%, and latent heat from phase transition of advective moisture is 11%; loss due to outgoing long-wave radiation is 98%, heat from phase transition of atmospheric moisture is 2%.
The Antarctic ice sheet is a vast area of heat sink. Constant negative surface radiation balance and low temperature of the ice sheet suggest that the latter will exist at any small amount of precipitation and, therefore, current glaciation of Antarctica is rather stable.