Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T09:57:34.510Z Has data issue: false hasContentIssue false

The Zakharov equation with separate mean flow and mean surface

Published online by Cambridge University Press:  05 January 2014

Odin Gramstad*
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
*
Email address for correspondence: [email protected]

Abstract

Using the Hamiltonian approach of Krasitskii (J. Fluid Mech., vol. 272, 1994, pp. 1–20), we derive a variant of the Zakharov equation in which the wave-induced mean surface elevation and the surface potential of the wave-induced mean flow are represented as separate variables governed by separate evolution equations. The kernel function of this new variant is simpler, and in particular also well defined in the uniform-wave-train limit for waves on finite depth. This form of the Zakharov equation may be advantageous in some applications. One example is the derivation of nonlinear Schrödinger equations in the narrow-band limit, where the handling of the mean flow and mean surface is significantly simpler than when starting from the original Zakharov equation. In this paper we have used the alternative form of the Zakharov equation to derive a Hamiltonian nonlinear Schrödinger equation for directional waves on arbitrary depth, valid to one order higher in bandwidth than the Hamiltonian equation recently presented by Craig, Guyenne and Sulem (Wave Motion, vol. 47, 2010, pp. 552–563).

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

öeferences

Annenkov, S. Y. & Shrira, V. I. 2001 Numerical modelling of water-wave evolution based on the Zakharov equation. J. Fluid Mech. 449, 341371.Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2006a Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys. Rev. Lett. 96 (20), 204501.Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2006b Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181207.Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2009 Fast nonlinear evolution in wave turbulence. Phys. Rev. Lett. 102 (2), 024502.Google Scholar
Benney, D. J. & Roskes, G. J. 1969 Wave instabilities. Stud. Appl. Maths 48 (4), 377385.Google Scholar
Brinch-Nielsen, U. & Jonsson, I. G. 1986 Fourth order evolution-equations and stability analysis for Stokes waves on arbitrary water depth. Wave Motion 8 (5), 455472.Google Scholar
Caponi, E. A., Saffman, P. G. & Yuen, H. C. 1982 Instability and confined chaos in a nonlinear dispersive wave system. Phys. Fluids 25 (12), 21592166.Google Scholar
Craig, W., Guyenne, P. & Sulem, C. 2010 A Hamiltonian approach to nonlinear modulation of surface water waves. Wave Motion 47 (8), 552563.Google Scholar
Crawford, D. R., Saffman, P. G. & Yuen, H. C. 1980 Evolution of a random inhomogeneous field of nonlinear deep-water gravity-waves. Wave Motion 2, 116.CrossRefGoogle Scholar
Davey, A. & Stewartson, K. 1974 On three-dimensional packets of surface waves. Proc. R. Soc. Lond.A 338 (1613), 101110.Google Scholar
Debsarma, S & Das, K. P. 2005 A higher-order nonlinear evolution equation for broader bandwidth gravity waves in deep water. Phys. Fluids 17 (10), 104101.Google Scholar
Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond.A 369 (1736), 105114.Google Scholar
Gramstad, O. & Stiassnie, M. 2013 Phase-averaged equation for water waves. J. Fluid Mech. 718, 280303.Google Scholar
Gramstad, O. & Trulsen, K. 2011 Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 670, 404426.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.Google Scholar
Janssen, P. A. E. M. 2009 On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech. 637, 144.Google Scholar
Janssen, P. A. E. M. & Onorato, M. 2007 The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanogr. 37, 23892400.Google Scholar
Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface-waves. J. Fluid Mech. 272, 120.Google Scholar
Proment, D. & Onorato, M. 2012 A note on an alternative derivation of the Benney equations for short wave long wave interactions. Eur. J. Mech. (B/Fluids) 34, 16.Google Scholar
Slunyaev, A. V. 2005 A high-order nonlinear envelope equation for gravity waves in finite-depth water. J. Expl Theor. Phys. 101, 926941.CrossRefGoogle Scholar
Stiassnie, M. 1984 Note on the modified nonlinear Schrödinger-equation for deep-water waves. Wave Motion 6 (4), 431433.CrossRefGoogle Scholar
Stiassnie, M. & Gramstad, O. 2009 On Zakharov’s kernel and the interaction of non-collinear wavetrains in finite water depth. J. Fluid Mech. 639, 433442.CrossRefGoogle Scholar
Stiassnie, M. & Shemer, L. 1984 On modifications of the Zakharov equation for surface gravity-waves. J. Fluid Mech. 143, 4767.Google Scholar
Stiassnie, M. & Shemer, L. 1987 Energy computations for evolution of class-I and class-II instabilities of Stokes waves. J. Fluid Mech. 174, 299312.Google Scholar
Trulsen, K. & Dysthe, K. B. 1996 A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24 (3), 281289.Google Scholar
Trulsen, K. & Dysthe, K. 1997 Freak Waves – A three-dimensional wave simulation. In Proceedings of the 21st Symposium on Naval Hydrodynamics pp. 550560. National Academy.Google Scholar
Trulsen, K., Kliakhandler, I., Dysthe, K. B. & Velarde, M. G. 2000 On weakly nonlinear modulation of waves on deep water. Phys. Fluids 12 (10), 24322437.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Yuen, H. C. & Lake, B. M. 1982 Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech. 22, 67229.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.Google Scholar
Zakharov, V. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. (B/Fluids) 18 (3), 327344.CrossRefGoogle Scholar
Zakharov, V. E. & Kharitonov, V. G. 1970 Instability of monochromatic waves on the surface of a liquid of arbitrary depth. J. Appl. Mech. Tech. Phys. 11, 741751.Google Scholar
Zakharov, V. E., L’vov, V. S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Springer.CrossRefGoogle Scholar