Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T06:13:02.010Z Has data issue: false hasContentIssue false

Wetting failure and contact line dynamics in a Couette flow

Published online by Cambridge University Press:  16 October 2008

M. SBRAGAGLIA
Affiliation:
Department of Physics and INFN, University of Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
K. SUGIYAMA
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo-Ku, Tokyo 113-8656, Japan
L. BIFERALE
Affiliation:
Department of Physics and INFN, University of Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

Abstract

Liquid–liquid wetting failure is investigated in a two-dimensional Couette system with two immiscible fluids of arbitrary viscosity. The problem is solved exactly using a sharp interface treatment of hydrodynamics (lubrication theory) as a function of the control parameters – capillary number, viscosity ratio and separation of scale – i.e. the slip length versus the macroscopic size of the system. The transition at a critical capillary number, from a stationary to a non-stationary interface, is studied while changing the control parameters. Comparisons with similar existing analyses for other geometries, such as the Landau–Levich problem, are also carried out. A numerical method of analysis is also presented, based on diffuse interface models obtained from multiphase extensions of the lattice Boltzmann equation. Sharp interface and diffuse interface models are quantitatively compared, indicating the correct limit of applicability of the diffuse interface models.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrat, J.-L. and Bocquet, L. 1999 Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss. 112, 119127.CrossRefGoogle Scholar
Benzi, R., Biferale, L., Sbragaglia, M., Succi, S. & Toschi, F. 2006 Mesoscopic modeling of a two-phase flow in the presence of the boundaries: the contact angle. Phys. Rev. E 74, 021509.Google ScholarPubMed
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299, 113.CrossRefGoogle ScholarPubMed
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. & Krook, M. 1954 A model for collision processes in gases. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
Briant, A. J., Wagner, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion: I; liquid–gas systems. Phys. Rev. E 69, 031602.Google ScholarPubMed
Briant, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion: II; binary fluids. Phys. Rev. E 69, 031603.Google ScholarPubMed
Cox, R. G. 1986 The dynamic of the spreading of liquids on a solid surface. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Chen, H. Y., Jasnow, D. & Vinals, J. 2000 Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85, 1686.CrossRefGoogle Scholar
Cristea, A. & Sofonea, V. 2003 Reduction of spurious velocity in finite difference lattice Boltzmann models for liquid–vapor systems. Intl J. Mod. Phys. 14, 12511266.CrossRefGoogle Scholar
De Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
De Gennes, P. G. 1986 Deposition of Langmuir–Blodget layers. Colloid Polymer Sci. 264, 463465.CrossRefGoogle Scholar
Denniston, C. & Robbins, M. O. 2001 Molecular and continuum boundary conditions for a miscible binary fluid. Phys. Rev. Lett. 87, 178302.CrossRefGoogle ScholarPubMed
Derjaguin, B. V. 1943 On the thickness of a layer of liquid remaining on the walls of vessels after their emptying, and the theory of the application of photoemulsion after coating on the cone film. Acta Physichochim. URSS 20, 349.Google Scholar
Ding, H. & Spelt, P. D. M. 2007 Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations. J. Fluid. Mech. 576, 287296.CrossRefGoogle Scholar
Dussan, E. B. V. 1979 Spreading of liquids on solid surfaces – static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.CrossRefGoogle Scholar
Dussan, E. B. V., Rame, E. & Garoff, S. 1991 On identifying the appropriate boundary conditions at moving contact lines. An experimental investigation. J. Fluid Mech, 230 97116.CrossRefGoogle Scholar
Eggers, J. 2004 a Hydrodinamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.CrossRefGoogle Scholar
Eggers, J. 2004 b Towards a description of contact line motion at higher capillary numbers. Phys. Fluids 16, 3491.CrossRefGoogle Scholar
Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17, 082106.CrossRefGoogle Scholar
Ghannum, M. T. & Esmail, M. N. 1993 experimental study of the wetting of fibers. AIChe J. 39, 361365.CrossRefGoogle Scholar
Golestanian, R. and Raphael, E. 2001 a Dissipation in dynamics of a moving contact line. Phys. Rev. E 64, 031601.Google ScholarPubMed
Golestanian, R. & Raphael, E. 2001 b Relaxation of a moving contact line and the Landau-Levich effect. Europhys. Lett. 55, 228234.CrossRefGoogle Scholar
Golestanian, R. & Raphael, E. 2003 Roughening transition in a moving contact line. Phys. Rev. E 67, 031603.Google Scholar
He, X. and Doolen, G. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107, 309328.CrossRefGoogle Scholar
Heine, D. R., Grest, G. S. & Webb, E. B. 2004 Spreading dynamics of polyer nanodroplets in cilindrical geometries. Phys. Rev. E 70, 011606.Google Scholar
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Math. 36, 5569.CrossRefGoogle Scholar
Hocking, L. M. 2001 Meniscus draw-up and draining. Euro. J. Appl. Maths. 12, 195208.CrossRefGoogle Scholar
Hocking, L. M. & Rivers, A. D. 1982 The spreading of a drop by capillary action. J. Fluid Mech. 121, 425442.CrossRefGoogle Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamics model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Inamuro, T., Ogata, T., Tajima, S. & Konishi, N. 2004 A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comp. Physics 198, 628644.CrossRefGoogle Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid. Mech 402, 5788.CrossRefGoogle Scholar
Jacqmin, D. 2004 Onset of wetting failure in liquid-liquid systems. J. Fluid. Mech. 517, 209228.CrossRefGoogle Scholar
Jia, X., Mc Laughlin, J. B. & Kontomaris, , 2006 Lattice Boltzmann simulations of contact line motion on uniform surfaces. Math. Comp. Sim. 72, 156159.CrossRefGoogle Scholar
Kistler, S. F. 1993 Hydrodynamics of wetting. In Wettability (ed. Berg, J.), pp. 311429. Marcel Dekker.Google Scholar
Koplik, J., Banavar, J. R. & Willemsen, J. F. 1989 Moleculer dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781.CrossRefGoogle Scholar
Kusumaatmaja, H. & Yeomans, J. M. 2007 Modelling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 60196032.CrossRefGoogle ScholarPubMed
Landau, L. D. & Levich, B. V. 1942 Dragging of a liquid by a moving plate. Acta Physicochimica URSS 17, 42.Google Scholar
Latva-Kokko, M. & Rothman, D. H. 2007 Scaling of dynamic contact angles in a lattice Boltzmann model. Phys. Rev. Lett. 98, 254503.CrossRefGoogle Scholar
Lee, T. & Fischer, P. F. 2006 Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 74, 046709.Google ScholarPubMed
Lee, T. & Lin, C.-L. 2005 A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratios. J. Comp. Phys. 206, 1647.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Pismen, L. M. & Pomeau, Y. 2000 Disjoining potntial and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 24802492.Google Scholar
Podgorski, T., Flesselles, J. M. and Limat, L. 2001 Corners, Cusps and pearls in running drops. Phys. Rev. Lett. 87, 036102.CrossRefGoogle ScholarPubMed
Quéré, D. 1991 On the minimal velocity of forced spreading in partial wetting. C. R. Acad. Sci. Paris II 313, 313318.Google Scholar
Rame, E., Garoff, S. & Willson, W. R. 2004 Characterizing the microscopic physics near moving contact lines using dynamic contact angle data. Phys. Rev. E 70, 031608.Google ScholarPubMed
Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K. & Toschi, F. 2007 Generalized lattice Boltzmann method with multi-range pseudo-potential. Phys. Rev. E 75, 026702.Google Scholar
Sbragaglia, M., Benzi, R., Biferale, L., Succi, S. & Toschi, F. 2006 Surface roughness-hydrophobicity coupling in microchannel and nanochannel Flows. Phys. Rev. Lett. 97, 204503.CrossRefGoogle ScholarPubMed
Sedev, R. V. & Petrov, J. G. 1991 The critical condition for transition from steady wetting to film entrainment. Colloids. Surf. 53, 147156.CrossRefGoogle Scholar
Seppecher, P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Eng. Sci. 34, 977992.CrossRefGoogle Scholar
Shan, X. 2006 Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73, 047701.Google Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 18151819.Google ScholarPubMed
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 29412948.Google ScholarPubMed
Simpkins, P. G. & Kuck, V. J. 2003 On air entrainment in coatings. J. Colloid Interface Sci. 263, 562.CrossRefGoogle ScholarPubMed
Snoeijer, J. H. 2005 Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701.CrossRefGoogle Scholar
Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behaviour in dynamically forced wetting. Phys. Rev. Lett. 96, 174504.CrossRefGoogle ScholarPubMed
Snoeijer, J. H., Andreotti, B., Delon, G. & Fermigier, M. 2007 Relaxation of a dewetting contact line: Part 1; a full-scale hydrodynamic calculation. J. Fluid Mech. 579, 6383.CrossRefGoogle Scholar
Somalinga, S. & Bose, A. 2000 Numerical investigation of boundary conditions for moving contact line problems. Phys. Fluids 12, 499.CrossRefGoogle Scholar
Succi, S. 2001 The Lattice Boltzmann Equation. Oxford Science.CrossRefGoogle Scholar
Thompson, P. A. & Robbins, M. O. 1989 Simulation of contact line motion, Slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766.CrossRefGoogle ScholarPubMed
Voinov, O. V. 1976 Hydrodinamics of wetting. Fluid Dyn. 11, 714.CrossRefGoogle Scholar
Wagner, A. J. 2003 The origin of spurious velocities in lattice Boltzmann. Intl J. Mod. Phys. B 17, 193196.CrossRefGoogle Scholar
Wolf-Gladrow, D. 2000 Lattice–Gas Cellular Automata And Lattice Boltzmann Models. Springer.CrossRefGoogle Scholar
Yuan, P. & Schaefer, L. 2006 Equations of state in a lattice Boltzmann model. Phys. Fluids 18, 042101.CrossRefGoogle Scholar
Zhang, J. & Kwok, D. Y. 2006 Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22, 49985004.CrossRefGoogle ScholarPubMed