Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T18:23:09.120Z Has data issue: false hasContentIssue false

Weak compressibility of surface wave turbulence

Published online by Cambridge University Press:  23 November 2007

MARIJA VUCELJA
Affiliation:
Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel
ITZHAK FOUXON
Affiliation:
Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel

Abstract

We study the growth of small-scale inhomogeneities in the density of particles floating in weakly nonlinear small-amplitude surface waves. Despite the small amplitude, the accumulated effect of the long-time evolution may produce a strongly inhomogeneous distribution of the floaters: density fluctuations grow exponentially with a small but finite exponent. We show that the exponent is of sixth or higher order in wave amplitude. As a result, the inhomogeneities do not form within typical time scales of the natural environment. We conclude that the turbulence of surface waves is weakly compressible and alone it cannot be a realistic mechanism of the clustering of matter on liquid surfaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balk, A. M. 2001 Anomalous diffusion of a tracer advected by wave turbulence. Phys. Lett. A 279, 370378.CrossRefGoogle Scholar
Balk, A. M., Falkovich, G. & Stepanov, M. G. 2004 Growth of density inhomogeneities in a flow of wave turbulence. Phys. Rev. Lett. 92, 244504.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 27902793.CrossRefGoogle ScholarPubMed
Bandi, M. M., Goldburg, W. I. & Cressman, G. R. jr 2006 Measurement of entropy production rate in compressible turbulence. Europhys. Lett. 76, 595601.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bec, J., GawĘdzki, K. & Horvai, P. 2004 Multifractal clustering in compressible flows. Phys. Rev. Lett. 92, 224501.CrossRefGoogle ScholarPubMed
Boffetta, G., Davoudi, J., Eckhardt, B. & Schumacher, J. 2006 a Lagrangian tracers on a surface flow: The role of time correlations. Phus. Rev. Lett. 93, 134501.Google Scholar
Boffetta, G., Davoudi, J. & de Lillo, F. 2006 b Multifractal clustering of passive tracers on a surface flow. Europhys. Lett. 74, 6268.CrossRefGoogle Scholar
Bohr, T. & Hansen, J. L. 1996 Chaotic particle motion under linear surface waves. Chaos 6, 554563.CrossRefGoogle ScholarPubMed
Chelton, D. B. & Eddy, W. F. 1993 Statistics and Physical Oceanography. National Academy Press.Google Scholar
Crawford, D. R., Saffman, P. G. & Yuen, H. C. 1980 Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2, 116.CrossRefGoogle Scholar
Cressman, J. R., Davoudi, J., Goldburg, W. & Schumacher, J. 2004 Eulerian and lagrangian studies in surface flow turbulence. New J. Phys. 6, 53.CrossRefGoogle Scholar
Cressman, J. R. & Goldburg, W. 2003 Compressible flow: Turbulence at the surface. J. Statist. Phys. 113, 875883.CrossRefGoogle Scholar
Denissenko, P., Falkovich, G. & Lukaschuk, S. 2006 How waves affect the distribution of particles that float on a liquid surface. Phys. Rev. Lett. 97, 244501.CrossRefGoogle ScholarPubMed
Dorfman, J. 1999 Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Eckhardt, B. & Schumacher, J. 2001 Turbulence and passive scalar transport in a free-slip surface. Phys. Rev. E 64, 016314.Google Scholar
Falkovich, G. & Fouxon, A. 2003 Entropy production away from the equilibrium. nlin.cd/0312033.Google Scholar
Falkovich, G. & Fouxon, A. 2004 Entropy production and extraction in dynamical systems and turbulence. New J. Phys. 6, 50.CrossRefGoogle Scholar
Falkovich, G., GawĘdzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975.CrossRefGoogle Scholar
Herterich, K. & Hasselmann, K. 1982 The horizontal diffusion of tracers by surface waves. J. Phys. Oceanogr. 12, 704711.2.0.CO;2>CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 2000 Fluid Mechanics. Butterworth-Heinemann.Google Scholar
Longuet-Higgins, M. S. 1963 The effect of non-linearities on statistical distributions in the theory of sea waves. J. Fluid. Mech. 17, 459480.CrossRefGoogle Scholar
Nameson, A., Antonsen, T. & Ott, E. 1996 Power law wave number spectra of fractal particle distributions advected by flowing fluids. Phys. Fluids 8, 24262434.CrossRefGoogle Scholar
Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press.CrossRefGoogle Scholar
Ramshankar, R., Berlin, D. & Gollub, J. 1990 Transport by capillary waves. part i. particle trajectories. Phys. Fluids A 2, 19551965.CrossRefGoogle Scholar
Reichl, L. E. 1988 A Modern Course in Statistical Physics. University of Texas Press.Google Scholar
Ruelle, D. 1996 Positivity of entropy production in nonequilibrium statistical mechanics. J. Statist Phys. 85, 123.CrossRefGoogle Scholar
Ruelle, D. 1997 Positivity of entropy production in the presence of a random thermostat. J. Statist Phys. 86, 935990.CrossRefGoogle Scholar
Ruelle, D. 1999 Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Statist Phys. 95, 393468.CrossRefGoogle Scholar
Schroder, E., Anderson, J. S., Levinsen, M. T. et al. 1996 Relative particle motion in capillary waves. Phys. Rev. Lett. 76, 47174720.CrossRefGoogle ScholarPubMed
Sommerer, J. C. 1996 Experimental evidence for power-law wave number spectra of fractal tracer distributions in a complicated surface flow. Phys. Fluids 8, 24412446.CrossRefGoogle Scholar
Sommerer, J. C. & Ott, E. 1993 Particles floating on a moving fluid: A dynamically comprehensible physical fracta. Science 259, 335339.CrossRefGoogle Scholar
Stepanov, M. G. 2006 private communication.Google Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Umeki, M. 1992 Lagrangian motion of fluid particles induced by three-dimensional standing surface waves. Phys. Fluids A 4, 19681978.CrossRefGoogle Scholar
Vucelja, M., Falkovich, G. & Fouxon, I. 2007 Clustering of matter in waves and currents. Phys. Rev. E 75, 065301.Google ScholarPubMed
Weichman, P. B. & Glazman, R. E. 2000 Passive scalar transport by traveling wave fields. J. Fluid Mech. 420, 147200.CrossRefGoogle Scholar
Yu, L., Ott, E. & Chen, Q. 1991 Fractal distribution of floaters on a fluid surface and the transition to chaos for random maps. Physica D 53, 102124.Google Scholar
Zakharov, V. E. 1966 Waves in nonlinear dispersive mediums. PhD thesis (in Russian). Institute for Nuclear Physics (Physics and Mathematics), Novosibirsk.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid (note a sign misprint in (1.8)). J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar
Zakharov, V. E. 1985 Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Rep. 129, 285366.CrossRefGoogle Scholar
Zakharov, V. E. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth field. Eur. J. Mech. B/Fluids 18, 327344.CrossRefGoogle Scholar
Zakharov, V. E., L'vov, V. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Springer.CrossRefGoogle Scholar
Zinn-Justin, J. 2002 Quantum Field Theory and Critical Phenomena. Oxford University Press.CrossRefGoogle Scholar