Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T21:59:08.605Z Has data issue: false hasContentIssue false

Wavenumber spectra of short gravity waves

Published online by Cambridge University Press:  21 April 2006

M. L. Banner
Affiliation:
School of Mathematics, University of New South Wales, PO Box 1, Kensington, NSW 2033, Australia
Ian S. F. Jones
Affiliation:
RAN Research Laboratory, PO Box 706, Darlinghurst, NSW 2010, Australia.
J. C. Trinder
Affiliation:
School of Surveying, University of New South Wales, PO Box 1, Kensington, NSW 2033, Australia

Abstract

The spectral balances involved in shaping the short gravity wave region of the ocean wave-height spectrum have been the subject of recent physical models. In terms of the wind friction velocity u*, gravitational acceleration g and local wavenumber k, these models predict a wavenumber dependence of $k^{-\frac{7}{2}}$, where k = |k|, and a linear dependence on u* for the equilibrium range of gravity waves above the spectral peak. In this paper we present the results of an experimental determination of the wavenumber spectrum for the wavelength range of 0.2−1.6 m, based on stereophotogrammetric determinations from an oil platform under open ocean conditions.

From our observations, for this wavenumber range, the one-dimensional equilibrium wavenumber spectrum was determined as \[ \phi (k_i) \sim \left(\frac{u^2_*k}{g}\right)^{\gamma} k^{-3}_{i}\;\;\;\;\;\;\;(i=1,2 \;\;\; K = (k_1,k_2)) \] where γ = 0.09±0.09 at the 95% confidence level. These limits embrace wind-independent approximations to the observed one-dimensional and two-dimensional wavenumber spectra of the form \[ \phi (k_i) \sim B k^{-3}_i \;\;\; (i = 1,2), \] and \[ \psi(k_i) \sim A k^{-4}, \] respectively, with B ∼ 10−4 and A ∼ 0.3 × 10−4 for $(u^2_*k_i/g)=10^{-2}$ and k = |k| is expressed in cycles/metre.

The present findings do not support the wavenumber dependence predicted by the recent models in this wavenumber range and are at variance with their predicted dependence on the friction velocity. However, our observations are generally consistent with the radar reflectivity dependence on wind direction and wind speed under Bragg scattering conditions within our wavenumber range. The experimental observations also point out the potentially important role of wave-breaking of longer wave components in influencing the spectral levels of short gravity wave components.

Type
Research Article
Copyright
1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atakturk, S. S. & Katsaros, K. B., 1987 Intrinsic frequency spectra of short capillary-gravity waves obtained from temporal measurements of wave height on a lake. J. Geophys. Res. 92, 51315141.Google Scholar
Cox, C. S. & Munk, W. H., 1954 Statistics of the sea surface derived from sun glitter. J. Marine Res. 13, 198227.Google Scholar
Dobson, E. B.: 1970 Measurement of the fine-scale structure of the sea. J. Geophys. Res. 75, 28532856.Google Scholar
Donelan, M. A., Hamilton, J. & Hui, W. H., 1985 Directional spectra of wind-generated waves. Phil. Trans. R. Soc. Lond. A 319, 509562.Google Scholar
Evans, D. D. & Shemdin, O. H., 1980 An investigation of the modulation of capillary and short gravity in the open ocean. J. Geophys. Res. 85, 50195024.Google Scholar
Forristall, G. K.: 1981 Measurements of a saturated range in ocean wave spectra. J. Geophys. Res. 86, 80758084.Google Scholar
Gotwols, B. L. & Irani, G. B., 1980 Optical determination of the phase velocity of short gravity waves. J. Geophys. Res. 85, 39643970.Google Scholar
Guinard, N. W., Ransone, J. T. & Daley, J. C., 1971 Variation of the NRCS of the sea with increasing roughness. J. Geophys. Res. 76, 15251538.Google Scholar
Hasselmann, K.: 1963 On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Computation of the energy flux and swell-sea interaction for a Neumann spectrum. J. Fluid Mech. 15, 385398.Google Scholar
Hasselmann, K.: 1974 On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Met. 6, 107127.Google Scholar
Hasselmann, D., Bosenberg, J., Dunckel, M., Richter, K., Grunewald, M. & Carlson, H., 1986 Measurements of wave-induced pressure over surface gravity waves. In Wave Dynamics and Radio Probing of the Sea Surface (ed. O. M. Phillips & K. Hasselmann). pp. 353368. Plenum.
Hasselmann, S. & Hasselmann, K., 1985 Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part 1. A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr. 15, 13691377.Google Scholar
Holthuijsen, L. H.: 1983 Stereophotography of ocean waves. Appl. Ocean Res. 5, 204209.Google Scholar
Kahma, K. K.: 1981 A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr. 11, 15031515.Google Scholar
Karara, H. M. & Abdel-Aziz, Y. I.1974 Accuracy aspects of non-metric imageries. Photogrammetric Engng 40, 11071117.Google Scholar
Kawai, S., Okuda, K. & Toba, Y., 1977 Field data support of three-seconds power law and gu*gu*σ−4−4 spectral form for growing wind waves. J. Oceanogr. Soc. Japan 33, 137150.Google Scholar
Kitaigorodskii, S. A.: 1983 On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr. 13, 816827.Google Scholar
Kitaigorodskii, S. A., Krasitskii, V. P. & Zaslavskii, M. M., 1975 On Phillips' theory of equilibrium range in the spectra of wind-generated gravity waves. J. Phys. Oceanogr. 5, 410420.Google Scholar
Komen, G. J., Hasselmann, S. & Hasselmann, K., 1984 On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 12711285.Google Scholar
Kondo, J., Fujinawa, Y. & Naito, G., 1972 Wave induced wind fluctuations over the sea. J. Fluid Mech. 51, 751771.Google Scholar
Lubard, S. C., Krimmel, J. E., Thebaud, L. R., Evans, D. D. & Shemdin, O. H., 1980 Optical image and laser slope meter intercomparisons of high frequency waves. J. Geophys. Res. 85, 49574966.Google Scholar
Mitsuyasu, H.: 1977 Measurement of the high frequency spectrum of ocean surface waves. J. Phys. Oceanogr 7, 882891.Google Scholar
Phillips, O. M.: 1958 The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech. 4, 426434.Google Scholar
Phillips, O. M.: 1977a The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.
Phillips, O. M.: 1977b The sea surface. In Modelling and Prediction of the Upper Layers of the Ocean (ed. E. B. Kraus, pp. 229237. Pergamon.
Phillips, O. M.: 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.Google Scholar
Pierson, W. J.(ed.) 1962 The directional spectrum of a wind generated sea as determined from data obtained by the Stereo Wave Observation Project. Coll. Engng, N. Y. U. Met. Pap. 2, no. 6.
Richter, K. & Rosenthal, W., 1986 Energy distribution of waves above 1 Hz on long wind waves. In Wave Dynamics and Radio Probing of the Sea Surface (ed. O. M. Phillips & K. Hasselmann), pp. 7594. Plenum.
Schule, J. J., Simpson, L. S. & De Leonibus, P. S.1971 A study of fetch limited wave spectra with an airborne laser. J. Geophys. Res. 76, 41604171.Google Scholar
Snyder, R. L., Dobson, F. W., Elliott, J. A. & Long, R. B., 1981 Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 159.Google Scholar
Stillwell, D.: 1969 Directional energy spectra of the sea from photographs. J. Geophys. Res. 74, 19741986.Google Scholar
Stillwell, D. & Pilon, R. O., 1974 Directional spectra of surface waves from photographs. J. Geophys. Res. 79, 12771285.Google Scholar
Stolte, S.: 1984 Modulation of short waves by long wind waves and wind. PhD Dissertation. University of Hamburg. 199pp.
Sugimori, Y.: 1975 A study of application of the holographic method to the determination of the directional spectrum of ocean waves. Deep-Sea Res. 22, 339350.Google Scholar
Tang, S. & Shemdin, O. H., 1983 Measurement of high frequency waves using a wave follower. J. Geophys. Res. 88, 98329840.Google Scholar
Thompson, T. W., Weissman, D. E. & Gonzalez, F. I., 1983 L band radar backscatter dependence upon surface wind stress: a summary of new SEASAT-1 and aircraft observations. J. Geophys. Res. 88, 17271735.Google Scholar
Toba, Y.: 1973 Local balance in the air-sea boundary processes, III. On the spectrum of wind waves. J. Oceanogr. Soc. Japan 29, 209220.Google Scholar
Valenzuela, G. R.: 1985 Microwave sensing of the sea surface. In The Ocean Surface: Wave breaking, Turbulent Mixing and Radio Probing (ed. Y. Toba & H. Mitsuyasu), pp. 233244. Reidel.
Webb, D. J.: 1978 Nonlinear transfers between sea waves. Deep-Sea Res. 25, 279298.Google Scholar
Wills, J. A. B.: 1984 Model tests on the Noordwijk tower. Rep. R184, NMI, Ltd., Feltham, Middlesex, UK.
Wu, J.: 1980 Wind-stress coefficients over sea surface near neutral conditions - a revisit. J. Phys. Oceanogr. 10, 727740.Google Scholar