Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T07:07:45.500Z Has data issue: true hasContentIssue false

Water waves and Korteweg–de Vries equations

Published online by Cambridge University Press:  19 April 2006

R. S. Johnson
Affiliation:
School of Mathematics, The University, Newcastle upon Tyne, NE1 7RU, U.K.

Abstract

The classical problem of water waves on an incompressible irrotational flow is considered. By introducing an appropriate non-dimensionalization, we derive four Korteweg–de Vries equations: two expressed in Cartesian co-ordinates and two in plane polars. The equations are: the classical (plane) KdV equation, the two-dimensional ‘nearly-plane’ equation, the concentric equation and a new ‘nearly-concentric’ equation. On the basis of the underlying water-wave equations, it is seen that two simple transformations exist between these KdV equations.

By constructing appropriate asymptotic regions defined in terms of the relevant small parameters, we show how various initial value problems give rise to certain solutions of the KdV equations. In particular, the generation of the similarity solutions is examined in detail and it is found that these solutions must eventually match to a solution of the full water-wave equations in a neighbourhood of the origin.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J. & Segur, H. 1977a Stud. Appl. Math. 57, 13.
Ablowitz, M. J. & Segur, H. 1977b Phys. Rev. Lett. 38, 1103.
Airault, H. 1979 Stud. Appl. Math. 61, 31.
Berezin, Y. A. & Karpman, V. I. 1964 Sov. Phys. J. Exp. Theor. Phys. 19, 1265.
Boussinesq, J. 1871 C.R. Acad. Sci. Paris. (June 19), 755.
Calogero, F. & Degasperis, A. 1978 Lett. Nuovo Cim. 23, 150.
Dryuma, V. S. 1974 Sov. Phys. JETP Lett. 19 (12), 387.
Fermi, E., Pasta, J. & Ulam, S. 1955 Los Alamos Rep. LA1940.
Gardner, C. S., Greene, J. M., Kruskal, M. D. & Miura, R. M. 1974 Comm. Pure appl. Math. 27, 97.
Ince, E. L. 1944 Ordinary Differential Equations. New York: Dover.
Johnson, R. S. 1979 Phys. Lett. A 72, 197.
Johnson, R. S. & Thompson, S. 1978 Phys. Lett. A 66, 279.
Kadomtsev, B. B. & Petviashvili, V. I. 1970 Soviet Phys. Dokl. 15, 539.
Korteweg, D. J. & de Vries, G. 1895 Phil. Mag. 39(5), 422.
Maxon, S. & Viecelli, J. 1974 Phys. Fluids 17, 1614.
Miles, J. W. 1978a J. Fluid Mech. 84, 181.
Miles, J. W. 1978b Proc. Roy. Soc. A 361, 277.
Rayleigh, Lord 1876 Lond., Edin. & Dubl. Phil. Mag. 1(5), 257.
Rosales, R. 1978 Proc. Roy. Soc. A 361, 265.
Russell, J. S. 1844 Report on Waves, Brit. Ass. Adv. Sci., Rep. on 14th Meeting, p. 311.
Zakharov, V. E. & Shabat, A. B. 1974 Function. Anal. & Appl. 8, 226.