Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T05:16:28.030Z Has data issue: false hasContentIssue false

Water film falling down an ice sheet

Published online by Cambridge University Press:  26 May 2020

Lu-Ye Jiang
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Ze Cheng
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Jie Peng*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
*
Email address for correspondence: [email protected]

Abstract

A gravity-driven water film falling down an ice sheet is considered within the framework of a long-wave approximation. The integral-boundary-layer method, modified with the account of the phase transition, is adopted to describe the evolution of both the free surface of a water film and the interface between the ice and water. A set of governing equations consisting of five coupled nonlinear partial differential equations is established. The linear instability analysis of the uniform base flow is performed, and the result is in good agreement with the Orr–Sommerfeld analysis of the linearized Navier–Stokes equations. The phase transition at the interface between the ice and water plays a role in stabilizing the system linearly with long-wavelength perturbations. The nonlinear solutions of the steady travelling waves are constructed numerically. The phase transition tends to suppress the dispersion of the interfacial wave. Comparisons to direct numerical simulation of the Navier–Stokes equations, which are performed with an extended marker and cell method, show a remarkable agreement. The integral-boundary-layer method captures the water film thickness and the topography of the ice sheet satisfactorily. The phase transition is observed to enhance the backflow phenomenon in the capillary region of the solitary-like interfacial wave.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktershev, S. P. & Alekseenko, S. V. 2013 Nonlinear waves and heat transfer in a falling film of condensate. Phys. Fluids 25 (8), 083602.CrossRefGoogle Scholar
Alexiades, V. 2017 Mathematical Modeling of Melting and Freezing Processes. Routledge.Google Scholar
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463494.CrossRefGoogle Scholar
Chang, H. C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433480.CrossRefGoogle Scholar
Chang, H. H. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films, vol. 14. Elsevier.Google Scholar
Davis, S. H. 2001 Theory of Solidification. Cambridge University Press.CrossRefGoogle Scholar
Dietze, G. F., Al-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.CrossRefGoogle Scholar
Dietze, G. F., Leefken, A. & Kneer, R. 2008 Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 595, 435459.CrossRefGoogle Scholar
Feltham, D. L. & Worster, M. G. 1999 Flow-induced morphological instability of a mushy layer. J. Fluid Mech. 391, 337357.CrossRefGoogle Scholar
Forth, S. A. & Wheeler, A. A. 1989 Hydrodynamic and morphological stability of the unidirectional solidification of a freezing binary alloy: a simple model. J. Fluid Mech. 202, 339366.CrossRefGoogle Scholar
Gilpin, R. R. 1981 Ice formation in a pipe containing flows in the transition and turbulent regimes. Trans. ASME J. Heat Transfer 103 (2), 363368.CrossRefGoogle Scholar
Hu, F. 1996 On perfectly matched layer as an absorbing boundary condition. AIAA Paper 1996–1664.Google Scholar
Hu, J., Zhou, B. H., Hang, Y. H., Liu, Q. S. & Zhang, S. D. 2010 Linear spatio-temporal instability analysis of ice growth under a falling water film. J. Fluid Mech. 649, 453466.CrossRefGoogle Scholar
Joo, S. W., Davis, S. H. & Bankoff, S. G. 1991 Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117146.CrossRefGoogle Scholar
Kalliadasis, S., Demekhin, E. A., Ruyer-Quil, C. & Velarde, M. G. 2003a Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech. 492, 303338.CrossRefGoogle Scholar
Kalliadasis, S., Kiyashko, A. & Demekhin, E. A. 2003b Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech. 475, 377408.CrossRefGoogle Scholar
Kunugi, T. & Kino, C. 2005 DNS of falling film structure and heat transfer via MARS method. Comput. Struct. 83 (6–7), 455462.CrossRefGoogle Scholar
Lee, J. S.1993 Freezing problem in pipe flows. PhD Thesis, Iowa State University. Available at: http://lib.dr.iastate.edu/.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lin, S. P. & Hudman, M. 1996 Nonequilibrium evaporation from a heated liquid layer. J. Thermophys. Heat Transfer 10 (3), 497503.CrossRefGoogle Scholar
Lock, G. S. H. & Lock, G. G. 1990 The Growth and Decay of Ice. Cambridge University Press.Google Scholar
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14 (3), 10821094.CrossRefGoogle Scholar
Matar, O. K., Craster, R. V. & Kumar, S. 2007 Falling films on flexible inclines. Phys. Rev. E 76 (5), 056301.Google ScholarPubMed
Meirmanov, A. M. 2011 The Stefan Problem, vol. 3. Walter de Gruyter.Google Scholar
Miladinova, S., Slavtchev, S., Lebon, G. & Legros, J. C. 2002 Long-wave instabilities of non-uniformly heated falling films. J. Fluid Mech. 453, 153175.CrossRefGoogle Scholar
Mitchell, S. L. & Myers, T. G. 2008 Approximate solution methods for one-dimensional solidification from an incoming fluid. Appl. Maths Comput. 202 (1), 311326.CrossRefGoogle Scholar
Mitchell, S. L. & Myers, T. G. 2012 Application of heat balance integral methods to one-dimensional phase change problems. Intl J. Differ. Equ. 2012, 187902.Google Scholar
Moore, M. R., Mughal, M. S. & Papageorgiou, D. T. 2017 Ice formation within a thin film flowing over a flat plate. J. Fluid Mech. 817, 455489.CrossRefGoogle Scholar
Myers, T. G. 1998 Thin films with high surface tension. SIAM Rev. 40 (3), 441462.Google Scholar
Myers, T. G. & Charpin, J. P. F. 2004 A mathematical model for atmospheric ice accretion and water flow on a cold surface. Intl J. Heat Mass Transfer 47 (25), 54835500.CrossRefGoogle Scholar
Myers, T. G., Charpin, J. P. F. & Chapman, S. J. 2002a The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys. Fluids 14 (8), 27882803.CrossRefGoogle Scholar
Myers, T. G., Charpin, J. P. F. & Thompson, C. P. 2002b Slowly accreting ice due to supercooled water impacting on a cold surface. Phys. Fluids 14 (1), 240256.CrossRefGoogle Scholar
Nusselt, W. 1923 Der wärmeaustausch am berieselungskühler. VDI-Forsch. 67, 206210.Google Scholar
Oron, A. 1999 Nonlinear dynamics of thin evaporating liquid films subject to internal heat generation. In Fluid Dyn. Interfaces (ed. Shyy, W. & Narayanan, R.). Cambridge University Press.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
Oron, A. & Peles, Y. 1998 Stabilization of thin liquid films by internal heat generation. Phys. Fluids 10 (3), 537539.CrossRefGoogle Scholar
Peng, J., Jiang, L. Y., Zhuge, W. L. & Zhang, Y. J. 2016 Falling film on a flexible wall in the presence of insoluble surfactant. J. Engng Maths 97 (1), 3348.CrossRefGoogle Scholar
Peng, J., Zhang, Y. J. & Zhuge, W. L. 2014 Falling film on flexible wall in the limit of weak viscoelasticity. J. Non-Newtonian Fluid Mech. 210, 8595.CrossRefGoogle Scholar
Prokopiou, T. H., Cheng, M. & Chang, H. C. 1991 Long waves on inclined films at high Reynolds number. J. Fluid Mech. 222, 665691.CrossRefGoogle Scholar
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.CrossRefGoogle Scholar
Rednikov, A. Y., Colinet, P., Velarde, M. G. & Legros, J. C. 2000 Rayleigh–Marangoni oscillatory instability in a horizontal liquid layer heated from above: coupling and mode mixing of internal and surface dilational waves. J. Fluid Mech. 405, 5777.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14 (1), 170183.CrossRefGoogle Scholar
Ruyer-Quil, C., Scheid, B., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. K. 2005 Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech. 538, 199222.CrossRefGoogle Scholar
Samanta, A., Ruyer-Quil, C. & Goyeau, B. 2011 A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353383.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. K. 2005 Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech. 538, 223244.CrossRefGoogle Scholar
Seki, N., Fukusako, S. & Younan, G. W. 1984 Ice-formation phenomena for water flow between two cooled parallel plates. Trans. ASME J. Heat Transfer 106 (3), 498505.CrossRefGoogle Scholar
Shapiro, E. & Timoshin, S. 2006 Linear stability of ice growth under a gravity-driven water film. Phys. Fluids 18 (7), 074106.CrossRefGoogle Scholar
Shapiro, E. & Timoshin, S. 2007 On ice-induced instability in free-surface flows. J. Fluid Mech. 577, 2552.CrossRefGoogle Scholar
Shkadov, V. Y. & Sisoev, G. M. 2004 Waves induced by instability in falling films of finite thickness. Fluid Dyn. Res. 35 (5), 357389.CrossRefGoogle Scholar
Sisoev, G. M., Matar, O. K., Craster, R. V. & Kumar, S. 2010 Coherent wave structures on falling fluid films flowing down a flexible wall. Chem. Engng Sci. 65 (2), 950961.CrossRefGoogle Scholar
Timoshin, S. N. 1997 Instabilities in a high-Reynolds-number boundary layer on a film-coated surface. J. Fluid Mech. 353, 163195.CrossRefGoogle Scholar
Trifonov, Y. Y. & Tsvelodub, O. Y. 1991 Nonlinear waves on the surface of a falling liquid film. Part 1. Waves of the first family and their stability. J. Fluid Mech. 229, 531554.CrossRefGoogle Scholar
Tsao, J. & Rothmayer, A.1998 A mechanism for ice roughness formation on an airfoil leading edge, contributing to glaze ice accretion. AIAA Paper 1998-0485.Google Scholar
Tsao, J. & Rothmayer, A.2000 Triple-deck simulation of surface glaze ice accretion. AIAA Paper 2000-0234.CrossRefGoogle Scholar
Tsao, J. C. & Rothmayer, A. P. 2002 Application of triple-deck theory to the prediction of glaze ice roughness formation on an airfoil leading edge. Comput. Fluids 31 (8), 9771014.CrossRefGoogle Scholar
Ueno, K. & Farzaneh, M. 2011 Linear stability analysis of ice growth under supercooled water film driven by a laminar airflow. Phys. Fluids 23 (4), 042103.CrossRefGoogle Scholar
Vargas, M. & Reshotko, E.1998 Physical mechanisms of glaze ice scallop formations on swept wings. AIAA Paper 1998-0491.CrossRefGoogle Scholar
Weinstein, S. J. & Kurz, M. R. 1991 Long-wavelength instabilities in three-layer flow down an incline. Phys. Fluids A 3 (11), 26802687.CrossRefGoogle Scholar
Worster, M. G., Batchelor, G. K. & Moffatt, H. K. 2000 Solidification of fluids. Persp. Fluid Dyn. 742, 393446.Google Scholar
Yang, H., Jiang, L. Y., Hu, K. X. & Peng, J. 2018 Numerical study of the surfactant-covered falling film flowing down a flexible wall. Eur. J. Mech. (B/Fluids) 72, 422431.CrossRefGoogle Scholar
Yao, L. S. & Prusa, J. 1989 Melting and freezing. In Advances in Heat Transfer, vol. 19, pp. 195. Elsevier.Google Scholar
Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.CrossRefGoogle Scholar
Zhou, Z. Q., Peng, J., Zhang, Y. J. & Zhuge, W. L. 2016 Viscoelastic liquid film flowing down a flexible tube. J. Fluid Mech. 802, 583610.CrossRefGoogle Scholar