Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:16:49.999Z Has data issue: false hasContentIssue false

Water bells formed on the underside of a horizontal plate. Part 2. Theory

Published online by Cambridge University Press:  13 April 2010

ELEANOR C. BUTTON
Affiliation:
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
JOHN F. DAVIDSON
Affiliation:
Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA, UK
GRAEME J. JAMESON
Affiliation:
Centre for Multiphase Processes, University of Newcastle, Callaghan, New South Wales 2308, Australia
JOHN E. SADER*
Affiliation:
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
*
Email address for correspondence: [email protected]

Abstract

In a companion paper (Part 1, Jameson et al. J. Fluid Mech. vol. 649, 2010, 19–43), the discovery of a new type of water bell was reported. When a vertical liquid jet impacts on the underside of a large horizontal plate, the resulting thin film spreads radially along the plate to an unspecified abrupt departure point, from whence it falls away from the plate of its own accord. The departure radius of the fluid from the plate is seen to depend strongly on the volumetric flow rate. The falling liquid may then coalesce to form a water bell. Here we present a theoretical analysis and explanation of this phenomenon. A force balance determining the maximum radial extension of the thin film flow along the plate is considered as a mechanism for fluid departure from the plate, for which an analytical model is developed. This model gives good predictions of the measured radius of departure. When a water bell has been formed, and the flow rate is altered, many interesting shapes are produced that depend on the shapes at previous flow rates. We discuss the origin of this hysteresis, and also present a leading order theory for the bell shape under a regime of changing flow rate. The models are compared with experimental results spanning two orders of magnitude in viscosity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aristoff, J. M., Lieberman, C., Chan, E. & Bush, J. W. M. 2006 Water bell and sheet instabilities. Phys. Fluids 18, S10.CrossRefGoogle Scholar
Bark, F. H., Wallin, H.-P., Gällstedt, M. G. & Kristiansson, L. P. 1979 Swirling water bells. J. Fluid Mech. 90, 625639.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Benedetto, D. & Caglioti, E. 1998 A stationary action principle for the water sheet. Eur. J. Mech. B/Fluids 17, 770772.CrossRefGoogle Scholar
Boussinesq, J. 1869 a Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire. C. R. Acad. Sci. Paris 69, 4548.Google Scholar
Boussinesq, J. 1869 b Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être heurtée contre un plan circulaire (suite). C. R. Acad. Sci. Paris 69, 128131.Google Scholar
Brenner, M. P. & Gueyffier, D. 1999 On the bursting of viscous films. Phys. Fluids 11, 737739.CrossRefGoogle Scholar
Brunet, P., Clanet, C. & Limat, L. 2004 Transonic liquid bells. Phys. Fluids 16, 26682678.CrossRefGoogle Scholar
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.CrossRefGoogle Scholar
Clanet, C. 2007 Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469496.CrossRefGoogle Scholar
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 1128.CrossRefGoogle Scholar
Dumbleton, J. H. 1969 Effect of gravity on the shape of water bells. J. Appl. Phys. 40, 39503954.CrossRefGoogle Scholar
Engel, O. G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37, 17981808.CrossRefGoogle Scholar
Gasser, J. C. & Marty, P. 1994 Liquid sheet modelling in an electromagnetic swirl atomiser. Eur. J. Mech. B/Fluids 13, 765784.Google Scholar
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1, 625643.CrossRefGoogle Scholar
Hopwood, F. L. 1952 Water bells. Proc. Phys. Soc. B 65, 25.CrossRefGoogle Scholar
Jameson, G. J., Jenkins, C. E., Button, E. C. & Sader, J. E. 2010 Water bells formed on the underside of a horizontal plate. Part 1. Experimental investigation. J. Fluid Mech. 649, 1943.CrossRefGoogle Scholar
Jeandel, X. & Dumouchel, C. 1999 Influence of viscosity on the linear stability of an annular liquid sheet. Intl J. Heat Fluid Flow 20, 499506.CrossRefGoogle Scholar
Lance, G. N. & Perry, R. L. 1953 Water bells. Proc. Phys. Soc. B 66, 10671073.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, Course of Theoretical Physics, vol. 6. Butterworth-Heinemann.Google Scholar
Lin, C. C. 1945 On the stability of 2-dimensional flows. 3. stability in a viscous fluid. Quart. Appl. Math. 3, 277301.CrossRefGoogle Scholar
Parlange, J.-Y. 1967 A theory of water-bells. J. Fluid Mech. 29, 361372.CrossRefGoogle Scholar
Pirat, C., Mathis, C., Mishra, M. & Maïssa, P. 2006 Destabilization of a viscous film flowing down in the form of a vertical cylindrical curtain. Phys. Rev. Lett. 97, 184501.CrossRefGoogle ScholarPubMed
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2002 Impact of water drops on small targets. Phys. Fluids 14, 34853501.CrossRefGoogle Scholar
Savart, F. 1833 a Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés. Ann. de Chim. 55, 257310.Google Scholar
Savart, F. 1833 b Mémoire sur le choc d'une veine liquide lancée contre un plan circulaire. Ann. de Chim. 54, 5687.Google Scholar
Taylor, G. I. 1959 a The dynamics of thin sheets of fluid. I. Water bells. Proc. R. Soc. A 253, 289295.Google Scholar
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc. R. Soc. A 253, 296312.Google Scholar
Taylor, G. I. 1959 c The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. A 253, 313321.Google Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.CrossRefGoogle Scholar
Wegener, P. P. & Parlange, J.-Y. 1964 Surface tension of liquids from water bell experiments. Zeit. Phys. Chem. 43, 245259.CrossRefGoogle Scholar