Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:44:32.262Z Has data issue: false hasContentIssue false

Water bells formed on the underside of a horizontal plate. Part 1. Experimental investigation

Published online by Cambridge University Press:  13 April 2010

GRAEME J. JAMESON*
Affiliation:
Centre for Multiphase Processes, University of Newcastle, Callaghan, New South Wales 2308, Australia
CLAIRE E. JENKINS
Affiliation:
Centre for Multiphase Processes, University of Newcastle, Callaghan, New South Wales 2308, Australia
ELEANOR C. BUTTON
Affiliation:
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
JOHN E. SADER
Affiliation:
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
*
Email address for correspondence: [email protected]

Abstract

In this study we report discovery of a new type of water bell. This is formed by impinging a vertical liquid jet on to the underside of a large horizontal flat plate. After impact, the liquid spreads radially along the plate before falling at an abrupt unspecified radius. This falling liquid may then coalesce to form a curtain which encloses a volume of air. When the flow rate of the impinging jet is altered from the value at initial formation, a pronounced hysteretic effect in the water bell shape can be observed. We present detailed observations of these new phenomena, including the size and nature of the flow underneath the plate and the shape of the liquid curtain. These observations are interpreted theoretically in a companion paper (Part 2, Button et al. vol. 649, 2010, pp. 45–68).

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aristoff, J. M., Leblanc, J. D., Hosoi, A. E. & Bush, J. W. M. 2004 Viscous hydraulic jumps. Phys. Fluids 16, S4.CrossRefGoogle Scholar
Aristoff, J. M., Lieberman, C., Chan, E. & Bush, J. W. M. 2006 Water bell and sheet instabilities. Phys. Fluids 18, S10.CrossRefGoogle Scholar
Baird, M. H. I. & Davidson, J. F. 1962 a Annular jets – I. Fluid dynamics. Chem. Engng Sci. 17, 467472.CrossRefGoogle Scholar
Baird, M. H. I. & Davidson, J. F. 1962 b Annular jets – II. Gas absorption. Chem. Eng. Sci. 17, 473480.CrossRefGoogle Scholar
Bark, F. H., Wallin, H.-P., Gällstedt, M. G. & Kristiansson, L. P. 1979 Swirling water bells. J. Fluid Mech. 90, 625639.CrossRefGoogle Scholar
Bond, W. N. 1935 The surface tension of a moving water sheet. Proc. Phys. Soc. B 47, 549558.CrossRefGoogle Scholar
Boussinesq, J. 1869 Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire. C. R. Acad. Sci. Paris 69, 4548.Google Scholar
Bremond, N. & Villermaux, E. 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.CrossRefGoogle Scholar
Bridgman, P. W. 1931 Dimensional Analysis. Yale University Press.Google Scholar
Brunet, P., Clanet, C. & Limat, L. 2004 Transonic liquid bells. Phys. Fluids 16, 26682678.CrossRefGoogle Scholar
Brunet, P., Flesselles, J.-M. & Limat, L. 2001 Parity breaking in a one-dimensional pattern: a quantitative study with controlled wavelength. Europhys. Lett. 56, 221227.CrossRefGoogle Scholar
Brunet, P., Flesselles, J.-M. & Limat, L. 2007 Dynamics of a circular array of liquid columns. Eur. Phys. J. B 55, 297322.CrossRefGoogle Scholar
Buchwald, E. & König, H. 1936 Dynamic surface tension from liquid bells. Ann. Physik 26, 661U10.Google Scholar
Buckingham, R. & Bush, J. W. M. 2001 Fluid polygons. Phys. Fluids 13, S10.CrossRefGoogle Scholar
Bush, J. W. M., Aristoff, J. M. & Hosoi, A. E. 2006 An experimental investigation of the stability of the circular hydraulic jump. J. Fluid Mech. 558, 3352.CrossRefGoogle Scholar
Bush, J. W. M. & Hasha, A. E. 2002 On the collision of laminar jets: fluid chains and fishbones. J. Fluid Mech. 511, 285310.CrossRefGoogle Scholar
Button, E. C., Davidson, J. F., Jameson, G. J. & Sader, J. E. 2010 Water bells formed on the underside of a horizontal plate. Part 2. Theory. J. Fluid Mech. 649, 4568.CrossRefGoogle Scholar
Clanet, C. 2000 Stability of water bells generated by jet impacts on a disk. Phys. Rev. Lett. 85, 51065109.CrossRefGoogle ScholarPubMed
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.CrossRefGoogle Scholar
Clanet, C. 2007 Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469496.CrossRefGoogle Scholar
Crapper, G. D., Dombrowski, N. & Pyott, G. A. D. 1975 Kelvin–Helmholtz wave growth on cylindrical sheets. J. Fluid Mech. 68, 497502.CrossRefGoogle Scholar
Dombrowski, N. & Fraser, R. P. 1954 A photographic investigation into the disintegration of liquid sheets. Phil. Trans. R. Soc. Lond. Ser. A 247, 101130.Google Scholar
Dombrowski, N. & Hooper, P. C. 1964 Sprays formed by impinging jets in laminar and turbulent flow. J. Fluid Mech. 18, 392400.CrossRefGoogle Scholar
Ellegaard, C., Hansen, A. E., Haaning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. & Watanabe, S. 1998 Creating corners in kitchen sinks. Nature 392, 767768.CrossRefGoogle Scholar
Engel, O. G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37, 17981808.CrossRefGoogle Scholar
Finnicum, D. S., Weinstein, S. J. & Ruschak, K. J. 1993 The effect of applied pressure on the shape of a two-dimensional liquid curtain falling under the effect of gravity. J. Fluid Mech. 255, 647665.CrossRefGoogle Scholar
Gasser, J. C. & Marty, P. 1994 Liquid sheet modelling in an electromagnetic swirl atomiser. Eur. J. Mech. B/Fluids 13, 765784.Google Scholar
Giorgiutti, F. & Limat, L. 1997 Solitary dilation waves in a circular array of liquid columns. Physica D 103, 590604.CrossRefGoogle Scholar
Göring, W. 1959 Zur Abhängigkeit der Oberflächenspannung von der Bildungs – und Alterungsgeschwindigkeit der Oberfläsche. Z. Elektrochem., Ber. Bunsenges. physik. Chem. 63, 10691077.Google Scholar
Hopwood, F. L. 1952 Water bells. Proc. Phys. Soc. B 65, 25.CrossRefGoogle Scholar
Huang, J. C. P. 1970 The breakup of axisymmetric liquid sheets. J. Fluid Mech. 43, 305319.CrossRefGoogle Scholar
Jameson, G. J., Jenkins, C., Button, E. C. & Sader, J. E. 2008 Water bells created from below. Phys. Fluids 20, 091108.CrossRefGoogle Scholar
Jeandel, X. & Dumouchel, C. 1999 Influence of viscosity on the linear stability of an annular liquid sheet. Intl J. Heat Fluid Flow 20, 499506.CrossRefGoogle Scholar
Lance, G. N. & Perry, R. L. 1953 Water bells. Proc. Phys. Soc. B 66, 10671073.CrossRefGoogle Scholar
Lasheras, J. C. & Hopfinger, E. J. 2000 Liquid jet atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 3352.CrossRefGoogle Scholar
Liu, H. 2000 Science and Engineering of Droplets: Fundamentals and Applications. William Andrew.Google Scholar
Liu, X. & Lienhard, J. 1993 The hydraulic jump in a circular jet impingement and in other thin liquid films. Exp. Fluids 15, 108116.CrossRefGoogle Scholar
Magnus, H. G. 1855 Hydraulische untersuchungen. Ann. Poggendorff 95, 159.Google Scholar
Mansour, A. & Chigier, N. 1990 Disintegration of liquid sheets. Phys. Fluids A 2, 706719.CrossRefGoogle Scholar
Olsson, R. G. & Turkdogan, E. T. 1966 Radial spread of a liquid stream on a horizontal plate. Nature 211, 813816.CrossRefGoogle Scholar
Parlange, J.-Y. 1967 A theory of water-bells. J. Fluid Mech. 29, 361372.CrossRefGoogle Scholar
Pirat, C., Mathis, C., Mishra, M. & Maïssa, P. 2006 Destabilization of a viscous film flowing down in the form of a vertical cylindrical curtain. Phys. Rev. Lett. 97, 184501.CrossRefGoogle ScholarPubMed
Rayleigh, Lord 1914 On the theory of long waves and bores. Proc. R. Soc. A 90, 324328.Google Scholar
Savart, F. 1833 a Mémoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. de Chim. 53, 337386.Google Scholar
Savart, F. 1833 b Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés. Ann. de Chim. 55, 257310.Google Scholar
Savart, F. 1833 c Mémoire sur le choc d'une veine liquide lancée contre un plan circulaire. Ann. de Chim. 54, 5687.Google Scholar
Savart, F. 1833 d Suite de Mémoire sur le choc d'une veine liquide lancée contre un plan circulaire. Ann. de Chim. 54, 113145.Google Scholar
Söderberg, L. D. & Alfredsson, P. H. 1998 Experimental and theoretical stability investigations of plane liquid jets. Eur. J. Mech. B/Fluids 17, 689737.CrossRefGoogle Scholar
Squire, H. B. 1953 Investigation of the instability of a moving liquid film. Br. J. App. Phys. 4, 167169.CrossRefGoogle Scholar
Taylor, G. I. 1959 a The dynamics of thin sheets of fluid. I. Water bells. Proc. R. Soc. A 253, 289295.Google Scholar
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc. R. Soc. A 253, 296312.Google Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.CrossRefGoogle Scholar
Wegener, P. P. & Parlange, J.-Y. 1964 Surface tension of liquids from water bell experiments. Zeit. Phys. Chem. 43, 245259.CrossRefGoogle Scholar