Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:02:51.324Z Has data issue: false hasContentIssue false

Wall-shear stress patterns of coherent structures in turbulent duct flow

Published online by Cambridge University Press:  25 August 2009

SEBASTIAN GROSSE*
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, D-52062 Aachen, Germany Laboratory for Aero and Hydrodynamics, Delft University of Technology, 2628 CA Delft, The Netherlands
WOLFGANG SCHRÖDER
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, D-52062 Aachen, Germany
*
Email address for correspondence: [email protected]

Abstract

The wall-shear stress distribution in turbulent duct flow has been assessed using the micro-pillar shear-stress sensor MPS3. The spatial resolution of the sensor line is 10.8l+ (viscous units) and the total field of view of 120l+ along the spanwise direction allows to capture characteristic dimensions of the wall-shear stress distribution at sufficiently high resolution. The results show the coexistence of low-shear and high-shear regions representing ‘footprints’ of near-wall coherent structures. The regions of low shear resemble long meandering bands locally interrupted by areas of higher shear stress. Conditional averages of the flow field indicate the existence of nearly streamwise counter-rotating vortices aligned in the streamwise direction. The results further show periods of very strong spanwise wall-shear stress to be related to the occurrence of high streamwise shear regions and momentum transfer towards the wall. These events go along with a spanwise oscillation and a meandering of the low-shear regions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H. & Eckelmann, H. 1988 The fluctuating all-hear stress and the velocity field in the viscous sublayer. Phys. Fluids 31 (5), 10261033.CrossRefGoogle Scholar
Bakewell, H. P. Jr. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (9), 18801889.CrossRefGoogle Scholar
Brücker, C. 2008 Signature of varicose wave packets in the viscous sublayer. Phys. Fluids 20, 061701.CrossRefGoogle Scholar
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.CrossRefGoogle Scholar
Eckelmann, H. 1974 The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65, 439459.CrossRefGoogle Scholar
Grosse, S. 2008 Development of the micro-pillar shear-stress sensor MPS3 for turbulent flows. PhD thesis, Faculty of Mechanical Engineering, RWTH Aachen University, Aachen.Google Scholar
Grosse, S. & Schröder, W. 2008 a Dynamic wall-shear stress measurements in turbulent pipe flow using the micro-pillar sensor MPS3. Intl J. Heat Fluid Flow 29 (3), 830840 (Special issue: Fifth International Symposium on Turbulence and Shear Flow Phenomena, TSFP-5, Munich, 2007).CrossRefGoogle Scholar
Grosse, S. & Schröder, W. 2008 b Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3. Meas. Sci. Technol. 19 (1), 015403.CrossRefGoogle Scholar
Grosse, S. & Schröder, W. 2009 a The micro-pillar shear-stress sensor MPS3. Sensors 9 (4), 22222251 (Special issue: State-of-the-Art Sensors Technology, Germany).CrossRefGoogle ScholarPubMed
Grosse, S. & Schröder, W. 2009 b Two-dimensional visualization of turbulent Wall-Shear stress using micro-pillars. AIAA J. 47 (2), 314321.CrossRefGoogle Scholar
Grosse, S., Schröder, W. & Brücker, C. 2006 Nano-Newton drag sensor based on flexible micro-pillars. Meas. Sci. Technol. 17 (10), 26892697.CrossRefGoogle Scholar
Grosse, S., Soodt, T. & Schröder, W. 2008 Dynamic calibration technique for the micro-pillar shear-stress sensor MPS3. Meas. Sci. Technol. 19 (10), 105201.CrossRefGoogle Scholar
Hinze, J. O. 1959 Turbulence, 1st ed. McGraw–Hill.Google Scholar
Jeon, S., Choi, H., Yoo, J. Y. & Moin, P. 1999 Space-time characteristics of the wall-shear stress fluctuations in a low-Reynolds-number channel flow. Phys. Fluids 11 (10), 30843094.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Khoo, B. C., Chew, Y. T. & Li, G. L. 1997 Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer region. Exp. Fluids 22 (4), 327335.CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids 5 (3), 695706.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Kreplin, H.-P. & Eckelmann, H. 1979 a Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids 22 (7), 12331239.CrossRefGoogle Scholar
Kreplin, H.-P. & Eckelmann, H. 1979 b Propagation of perturbations in the viscous sublayer and adjacent wall region. J. Fluid Mech. 95 (2), 305322.CrossRefGoogle Scholar
Lee, M. K., Eckelman, L. D. & Hanratty, T. J. 1974 Identification of turbulent wall eddies through the phase relation of the components of the fluctuating velocity gradient. J. Fluid Mech. 66 (1), 1733.CrossRefGoogle Scholar
Lee, C. & Kim, J. 2002 Control of the viscous sublayer for drag reduction. Phys. Fluids 14 (7), 25232529.CrossRefGoogle Scholar
Lee, C., Kim, J. & Choi, H. 1998 Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245258.CrossRefGoogle Scholar
Lyons, S. L., Hanratty, T. J. & McLaughlin, J. B. 1989 Turbulence-producing eddies in the viscous wall region. AIChE J. 35 (12), 19621974.CrossRefGoogle Scholar
Miyagi, N., Kimura, M., Shoji, H., Saima, A., Ho, C.-M., Tung, S. & Tai, Y.-C. 2000 Statistical analysis on wall shear stress of turbulent boundary layer in a channel flow using micro-shear stress imager. Intl J. Heat Fluid Flow 21 (5), 576581.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11, 943945.CrossRefGoogle Scholar
Obi, S., Inoue, K., Furukawa, T. & Masuda, S 1996 Experimental study on the statistics of wall shear stress in turbulent channel flows. Intl J. Heat Fluid Flow 17 (3), 187192.CrossRefGoogle Scholar
Quadrio, M. & Luchini, P. 2003 Integral space-time scales in turbulent wall flows. Phys. Fluids 15 (8), 22192227.CrossRefGoogle Scholar
Shah, D. A. & Antonia, R. A. 1986 Isotropic forms of vorticity and velocity structure function equations in several turbulent shear flows. Phys. Fluids 29 (12), 40164024.CrossRefGoogle Scholar
Sheng, J., Malkiel, E. & Katz, J. 2008 Using digital holographic microscopy for simultaneous measurements of three-dimensional near wall velocity and wall shear stress in a turbulent boundary layer. Exp. Fluids.CrossRefGoogle Scholar
Sirkar, K. K. & Hanratty, T. J. 1970 The limiting behaviour of the turbulent transverse velocity component close to a wall. J. Fluid Mech. 44 (3), 605614.CrossRefGoogle Scholar
Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1977 Properties of wall-shear stress fluctuations in turbulent duct flow. J. Appl. Mech. 44, 389395.CrossRefGoogle Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. Phil. Trans. Ser. A 164, 476490.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Uddin, A. K. M., Perry, A. E. & Marusic, I. 1997 On the validity of Taylor's hypothesis in wall turbulence. J. Mech. Engng Res. Dev. 19–20, 5766.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54 (1), 3948.CrossRefGoogle Scholar
Yoshino, T., Suzuki, Y. & Kasagi, N. 2008 Drag reduction of turbulence air channel flow with distributed micro sensors and actuators. J. Fluid Sci. Technol. 3 (1), 137148.CrossRefGoogle Scholar