Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:04:12.589Z Has data issue: false hasContentIssue false

Wall effects in non-Boussinesq density currents

Published online by Cambridge University Press:  10 December 2008

THOMAS BONOMETTI*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, [email protected]; [email protected]
S. BALACHANDAR
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, [email protected]; [email protected]
JACQUES MAGNAUDET
Affiliation:
Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, Allée Camille Soula, 31400 Toulouse, [email protected]
*
Email address for correspondence: [email protected]

Abstract

We report on the results of a numerical study of nearly immiscible contrasted density currents aimed at shedding light on the influence of wall effects on current dynamics in the lock-exchange configuration. The numerical approach is an interface-capturing method which does not involve any explicit reconstruction of the interface. Navier–Stokes equations are solved on a fixed grid and a hyperbolic equation is used for the transport of the local volume fraction of one of the fluids. This allows us to describe the density currents for the complete range of density contrast 10−3≤ρLH≤0.99 (ρL and ρH being the density of the light and heavy fluids) and a wide range of Reynolds number 70≤Re≤5×104 (based on the channel height and the viscosity of the heavy fluid). The use of free-slip vs. no-slip boundary conditions enables us to separate the dissipation at the interface from the dissipation at the boundaries. Present results reveal that wall effects play a significant role on the propagation of contrasted density currents, unlike dissipation at the interface. It is first shown that when wall friction can be neglected, theoretical models based on the inviscid shallow-water approximations and Benjamin's steady-state result describe fairly well the light and heavy front velocities of density currents for the complete range of density ratio. However, when wall friction cannot be neglected, the results depart significantly from the prediction of inviscid theories. It is observed that most of the dissipation in highly contrasted currents takes place at the bottom wall and is a maximum at the head of the heavy current. This dissipation is shown to be responsible for the decrease of the front velocity. We propose a simple model based on Benjamin's analysis that includes wall friction. Keeping in mind the simplicity and limitations of the present model, the prediction of the front velocity of both the heavy and light currents is observed to be in good agreement with the numerical results for the complete range of density contrast. This gives further support to the idea that wall effects are the crucial ingredient for accurately predicting the front velocity of highly contrasted density currents.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baines, W. D., Rottman, J. W. & Simpson, J. E. 1985 The motion of constant-volume air cavities released in long horizontal tubes. J. Fluid Mech. 161, 313327.CrossRefGoogle Scholar
Benjamin, T. B. 1968 Density currents and related phenomena. J. Fluid Mech. 31, 209248.CrossRefGoogle Scholar
Birman, V., Martin, J. E. & Meiburg, E. 2005 The non-Boussinesq lock-exchange problem. Part 2. High-resolution simulations. J. Fluid Mech. 537, 125144.CrossRefGoogle Scholar
Bonometti, T. & Balachandar, S. 2008 Effect of Schmidt number on the structure and propagation of density currents. Theor. Comput. Fluid. Dyn. 22, 341361.CrossRefGoogle Scholar
Bonometti, T. & Magnaudet, J. 2006 Transition from spherical cap to toroidal bubbles. Phys. Fluids 18, 052102.CrossRefGoogle Scholar
Bonometti, T. & Magnaudet, J. 2007 An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. Intl J. Multiphase Flow 33, 109133.CrossRefGoogle Scholar
Boris, J. P. & Book, D. L. 1973 Flux-corrected transport : I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 18, 248283.Google Scholar
Britter, R. & Linden, P. 1980 The motion of a front of a gravity current travelling down an incline. J. Fluid Mech. 99, 531543.CrossRefGoogle Scholar
Bühler, J., Wright, S. J. & Kim, Y. 1991 Gravity currents advancing into a coflowing fluid. J. Hydraul. Res. 29, 243257.CrossRefGoogle Scholar
Cantero, M., Balachandar, S., Garcia, M. & Ferry, J. 2006 Direct numerical simulations of planar and cyindrical density currents. J. Appl. Mech. 73, 923930.CrossRefGoogle Scholar
Cantero, M. I., Lee, J. R., Balachandar, S. & Garcia, M. H. 2007 On the front velocity of gravity currents. J. Fluid Mech. 586, 139.CrossRefGoogle Scholar
Daly, B. & Pracht, W. 1968 Numerical study of density-current surges. Phys. Fluids 11, 1530.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability, 2nd edn.Cambridge University Press.Google Scholar
Dressler, R. F. 1952 Hydraulic resistance effect upon the dam-break functions. J. Res. Natl. Bur. Stand. 49, 217225.CrossRefGoogle Scholar
Dressler, R. F. 1954 Comparison of theories and experiments for the hydraulic dam-break wave. In Publication 38 de l'Association Internationale d'Hydrologie, pp. 319–328.Google Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2007 A note on the propagation speed of a weakly dissipative gravity current. J. Fluid Mech. 574, 393403.CrossRefGoogle Scholar
Etienne, J., Hopfinger, E. J. & Saramito, P. 2005 Numerical simulations of high density ratio lock-exchange flows. Phys. Fluids 17, 036601.CrossRefGoogle Scholar
Gardner, G. C. & Crow, I. G. 1970 The motion of large bubbles in horizontal channels. J. Fluid Mech. 43, 247255.CrossRefGoogle Scholar
Grant, G. B., Jagger, S. F. & Lea, C. J. 1998 Fires in tunnels. Phil. Trans. R. Soc. Lond. A 356, 2873–296.CrossRefGoogle Scholar
Gröbelbauer, H. P., Fanneløp, T. K. & Britter, R. E. 1993 The propagation of intrusion fronts of high density ratio. J. Fluid Mech. 250, 669687.CrossRefGoogle Scholar
Hager, W. H. 1988 Abflussformen für turbulente Strömungen. Wasserwirtschaft 78, 7984.Google Scholar
Härtel, C., Meiburg, E. & Necker, F. 2000 Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418, 189212.CrossRefGoogle Scholar
Hogg, A. J. & Pritchard, D. 2004 The effects of hydraulic resistance on dam-break and other shallow inertial flows. J. Fluid Mech. 501, 179212.CrossRefGoogle Scholar
Hoult, D. 1972 Oil spreading in the sea. Annu. Rev. Fluid Mech. 4, 341368.CrossRefGoogle Scholar
Huppert, H. E. & Simpson, J. E. 1980 The slumping of density currents. J. Fluid Mech. 99, 785799.CrossRefGoogle Scholar
von Kármán, T. 1940 The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46, 615683.CrossRefGoogle Scholar
Keller, J. J. & Chyou, Y. P. 1991 On the hydraulic lock exchange problem. J. Appl. Maths Phys. 42, 874909.Google Scholar
Klemp, J. B., Rotunno, R. & Skamarock, W. C. 1994 On the dynamics of density currents in a channel. J. Fluid Mech. 269, 169198.CrossRefGoogle Scholar
Kranenburg, C. 1978 Internal fronts in two-layer flow. ASCE J. Hydaul. Div. 104, HY10, 14491453.Google Scholar
Lamb, H. 1945 Hydrodynamics, 6th edn.Cambridge University Press.Google Scholar
Lauber, G. & Hager, W. H. 1998 Experiments to dam-break wave: horizontal channel. J. Hydraul. Res. 36, 291307.CrossRefGoogle Scholar
Lowe, R. J., Rottman, J. W. & Linden, P. F. 2005 The non-Boussinesq lock-exchange problem. Part 1. Theory and experiments. J. Fluid Mech. 537, 101124.CrossRefGoogle Scholar
McKeon, B. J., Zagarola, M. V. & Smits, A. J. 2005 A new friction factor relationship for fully developed pipe flow. J. Fluid Mech. 538, 429443.CrossRefGoogle Scholar
Marino, B., Thomas, L. & Linden, P. 2005 The front condition for density currents. J. Fluid Mech. 536, 4978.CrossRefGoogle Scholar
Martin, J. C. & Moyce, W. J. 1952 An experimental study of the collapse of liquid columns on a rigid horizontal plane. Phil. Trans. R. Soc. A 244, 312324.Google Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2005 Mixing and dissipation in particle-driven density currents. J. Fluid Mech. 545, 339372.CrossRefGoogle Scholar
Ozgökmen, T., Fischer, P., Duan, J. & Iliescu, T. 2004 Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model. J. Phys. Oceanogr. 34, 20062026.2.0.CO;2>CrossRefGoogle Scholar
Ritter, A. 1892 Die fortplanzung der wasserwellen. Z. Verein. Deutsch. Ing. 36, 947954.Google Scholar
Rottman, J. & Simpson, J. 1983 Density currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95110.CrossRefGoogle Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc R. Soc. Lon. A 245, 312329.Google Scholar
de Saint-Venant, B. 1871 Théorie du movement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. 73, 147154, 237–340.Google Scholar
Schmidt, W. 1911 Zur Mechanik der boen. Z. Met. 28, 355362.Google Scholar
Schoklitsch, A. 1917 Uber Dammbruchwellen. Sitzungsber. Akad. Wissenchaft. Wien 26, 14891514.Google Scholar
Seon, T., Hulin, J. P. & Salin, D. 2004 Buoyant mixing of miscible fluids in tilted tubes. Phys. Fluids 16, L103.CrossRefGoogle Scholar
Shin, J., Dalziel, S. & Linden, P. 2004 Density currents produced by lock exchange. J. Fluid Mech. 521, 134.CrossRefGoogle Scholar
Simpson, J. 1972 Effect of the lower boundary on the head of a gravity current. J. Fluid Mech. 53, 759768.CrossRefGoogle Scholar
Simpson, J. 1997 Density Currents, 2nd edn.Cambridge University Press.Google Scholar
Stansby, P. K., Chegini, A. & Barnes, T. C. D. 1998 The initial stages of dam-break flow. J. Fluid Mech. 374, 407424.CrossRefGoogle Scholar
Stoker, J. J. 1957 Water Waves, Interscience.Google Scholar
Ungarish, M. 2007 A shallow-water model for high-Reynolds-number gravity currents for a wide range of density differences and fractional depths. J. Fluid Mech. 579, 373382.CrossRefGoogle Scholar
Whitham, G. B. 1955 The effects of hydraulic resistance in the dam-break problem. Proc. R. Soc. Lond. A 227, 399407.Google Scholar
Wilkinson, D. L. 1982 Motion of air cavities in long horizontal ducts. J. Fluid Mech. 118, 109122.CrossRefGoogle Scholar
Zalesak, S. T. 1979 Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335362.CrossRefGoogle Scholar
Zukoski, E. E. 1966 Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. J. Fluid Mech. 25, 821840.CrossRefGoogle Scholar