Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:52:27.690Z Has data issue: false hasContentIssue false

Wall accumulation and spatial localization in particle-laden wall flows

Published online by Cambridge University Press:  05 April 2012

G. Sardina
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome, 00184 Rome, Italy
P. Schlatter
Affiliation:
Linné FLOW Center, KTH Mechanics, SE-100 44 Stockholm, Sweden
L. Brandt
Affiliation:
Linné FLOW Center, KTH Mechanics, SE-100 44 Stockholm, Sweden
F. Picano
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome, 00184 Rome, Italy
C. M. Casciola*
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome, 00184 Rome, Italy
*
Email address for correspondence: [email protected]

Abstract

We study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. del Álamo, J. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41.CrossRefGoogle Scholar
2. Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97 (14), 144507.CrossRefGoogle ScholarPubMed
3. Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
4. Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 84502.CrossRefGoogle ScholarPubMed
5. Calzavarini, E., Cencini, M., Lohse, D. & Toschi, F. 2008 Quantifying turbulence-induced segregation of inertial particles. Phys. Rev. Lett. 101 (8), 84504.CrossRefGoogle ScholarPubMed
6. Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Springer.Google Scholar
7. Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32 (3), 565568.2.0.CO;2>CrossRefGoogle Scholar
8. Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95 (2), 024503.CrossRefGoogle ScholarPubMed
9. Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy at small scales in high shear turbulence. Phys. Fluids 19, 101704.CrossRefGoogle Scholar
10. Cerbelli, S., Giusti, A. & Soldati, A. 2001 ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence. Intl J. Multiphase Flow 27 (11), 18611879.CrossRefGoogle Scholar
11. Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007 SIMSON: a pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep., TRITA-MEK 2007:07. KTH Mechanics, Stockholm.Google Scholar
12. Coleman, S. W. & Vassilicos, J. C. 2009 A unified sweep–stick mechanism to explain particle clustering in two- and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids 21, 113301.CrossRefGoogle Scholar
13. Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
14. Elperin, T., Kleeorin, N. & Rogachevskii, I. 1996 Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow. Phys. Rev. Lett. 77 (27), 53735376.CrossRefGoogle ScholarPubMed
15. Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 3742.CrossRefGoogle Scholar
16. Gerashchenko, S., Sharp, N. S., Neuscamman, S. & Warhaft, Z. 2008 Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617, 255281.CrossRefGoogle Scholar
17. Goto, S. & Vassilicos, J. C. 2008 Sweep–stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 54503.CrossRefGoogle ScholarPubMed
18. Gualtieri, P., Picano, F. & Casciola, C. M. 2009 Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629, 2539.CrossRefGoogle Scholar
19. Kaftori, D., Hetsroni, G. & Banerjee, S. 1995a Particle behaviour in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.CrossRefGoogle Scholar
20. Kaftori, D., Hetsroni, G. & Banerjee, S. 1995b Particle behaviour in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7, 1107.CrossRefGoogle Scholar
21. Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
22. Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13, 2957.CrossRefGoogle Scholar
23. Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
24. Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.CrossRefGoogle Scholar
25. Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883.CrossRefGoogle Scholar
26. Mehlig, B., Wilkinson, M., Duncan, K., Weber, T. & Ljunggren, M. 2005 Aggregation of inertial particles in random flows. Phys. Rev. E 72 (5), 051104.CrossRefGoogle ScholarPubMed
27. Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.CrossRefGoogle Scholar
28. Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to . Phys. Fluids 11, 943.CrossRefGoogle Scholar
29. Niño, Y. & Garcia, M. H. 1996 Experiments on particle turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.CrossRefGoogle Scholar
30. Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 2733.CrossRefGoogle Scholar
31. Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 3305.CrossRefGoogle Scholar
32. Picciotto, M., Marchioli, C. & Soldati, A. 2005 Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101.CrossRefGoogle Scholar
33. Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14 (6), 729739.CrossRefGoogle Scholar
34. Righetti, M. & Romano, G. P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.CrossRefGoogle Scholar
35. Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
36. Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C. M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86 (3–4), 519532.CrossRefGoogle Scholar
37. Shotorban, B. & Balachandar, S. 2006 Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105.CrossRefGoogle Scholar
38. Squires, K. & Eaton, J. 1991 Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.CrossRefGoogle Scholar
39. Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
40. Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
41. Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
42. Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.CrossRefGoogle Scholar