Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T20:46:35.087Z Has data issue: false hasContentIssue false

Wake transitions behind a streamwise rotating disk

Published online by Cambridge University Press:  09 December 2022

Danxue Ouyang
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Xinliang Tian*
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China SJTU Sanya Yazhou Bay Institute of Deepsea Sci-Tech, Sanya 572000, PR China
Yakun Zhao
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China SJTU Sanya Yazhou Bay Institute of Deepsea Sci-Tech, Sanya 572000, PR China
Binrong Wen
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China SJTU Sanya Yazhou Bay Institute of Deepsea Sci-Tech, Sanya 572000, PR China
Xin Li
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China SJTU Sanya Yazhou Bay Institute of Deepsea Sci-Tech, Sanya 572000, PR China
Jun Li
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Tao Peng
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Zhike Peng
Affiliation:
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, PR China School of Mechanical Engineering, Ningxia University, Ningxia 750021, PR China
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations are performed to investigate the wake transitions of the flow normal to a circular rotating disk. The diameter-thickness aspect ratio of the disk is $\chi =50$. The Reynolds number of the free stream is defined as $Re_s=U_\infty D/\nu$, with incoming flow velocity $U_\infty$, disk diameter $D$, and kinematic viscosity of the fluid $\nu$. The rotational motion of the disk is described by the Reynolds number of rotation $Re_r=\varOmega Re_s$, with non-dimensional rotation rate $\varOmega =\frac {1}{2}\omega D/U_\infty$, where $\omega$ is the angular rotation speed of the disk. Extensive numerical simulations are performed in the parameter space $50 \leqslant Re_s \leqslant 250$ and $0 \leqslant Re_r \leqslant 250$, in which six flow regimes are identified as follows: the axisymmetric state, the low-speed steady rotation (LSR) state, the high-speed steady rotation (HSR) state, the low-speed unsteady rotation (LUR) state, the rotational vortex shedding state, and the chaotic state. Although plane symmetry exists in the wake when the disk is stationary, a small rotation will immediately destroy its symmetry. However, the vortex shedding frequencies and wake patterns of the stationary disk are inherited by the unsteady rotating cases at low $Re_r$. A flow rotation rate jump is observed at $Re_s\approx 125$. The LUR state is intermediate between the LSR and HSR states. Due to the rotational motion, the wake of the disk enters the steady rotation state earlier at large $Re_r$, and is delayed into the vortex shedding state in the whole range of $Re_r$. In the steady rotation states (LSR and HSR), the steady flow rotation rate is linearly correlated with the disk rotation rate. It is found that the rotation of the disk can restrain the vortex shedding. The chaotic state can be regularized by the medium rotation speed of the disk.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auguste, F., Fabre, D. & Magnaudet, J. 2010 Bifurcations in the wake of a thick circular disk. Theor. Comput. Fluid Dyn. 24, 305313.10.1007/s00162-009-0144-3CrossRefGoogle Scholar
Barkla, H.M. & Auchterlonie, L.J. 1971 The Magnus or Robins effect on rotating spheres. J. Fluid Mech. 47, 437447.10.1017/S0022112071001150CrossRefGoogle Scholar
Berger, E., Scholz, D. & Schumm, M. 1990 Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids Struct. 4, 231257.CrossRefGoogle Scholar
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. (B/Fluids) 25, 321336.10.1016/j.euromechflu.2005.10.001CrossRefGoogle Scholar
Chrust, M., Bouchet, G. & Dušek, J. 2010 Parametric study of the transition in the wake of oblate spheroids and flat cylinders. J. Fluid Mech. 665, 199208.10.1017/S0022112010004878CrossRefGoogle Scholar
Chrust, M., Goujon-Durand, S. & Wesfreid, J.E. 2013 Loss of a fixed plane of symmetry in the wake of a sphere. J. Fluids Struct. 41, 5156.10.1016/j.jfluidstructs.2012.11.008CrossRefGoogle Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702.10.1063/1.2909609CrossRefGoogle Scholar
Fernandes, P.C., Risso, F., Ern, P. & Magnaudet, J. 2007 Oscillatory motion and wake instability of freely rising axisymmetric bodies. J. Fluid Mech. 573, 479502.10.1017/S0022112006003685CrossRefGoogle Scholar
Gao, S., Tao, L., Tian, X. & Yang, J. 2018 Flow around an inclined circular disk. J. Fluid Mech. 851, 687714.10.1017/jfm.2018.526CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. CTR Rep. CTR-S88, pp. 193–208. Center for Turbulence Research.Google Scholar
Johnson, T.A. & Patel, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.10.1017/S0022112098003206CrossRefGoogle Scholar
Kim, D. & Choi, H. 2002 Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. 461, 365386.10.1017/S0022112002008509CrossRefGoogle Scholar
Kuo, Y.H. & Baldwin, L.V. 1967 The formation of elliptical wakes. J. Fluid Mech. 27, 353360.10.1017/S0022112067000369CrossRefGoogle Scholar
Lorite-Díez, M. & Jiménez-González, J.I. 2020 Description of the transitional wake behind a strongly streamwise rotating sphere. J. Fluid Mech. 896, A18.10.1017/jfm.2020.342CrossRefGoogle Scholar
Marshall, D. & Stanton, T.E. 1931 On the eddy system in the wake of flat circular plates in three dimensional flow. Proc. R. Soc. Lond. A 130, 295301.Google Scholar
Meliga, P., Chomaz, J.M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.10.1017/S0022112009007290CrossRefGoogle Scholar
Michael, P. 1966 Steady motion of a disk in a viscous fluid. Phys. Fluids 9, 466.10.1063/1.1761699CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.10.1017/S0022112093002150CrossRefGoogle Scholar
Neeraj, M.P. & Tiwari, S. 2018 Wake characteristics of a sphere performing streamwise rotary oscillations. Eur. J. Mech. (B/Fluids) 72, 485500.CrossRefGoogle Scholar
OpenFOAM 2021 The Open Source CFD Toolbox, Programmer's Guide, Version v2112. OpenCFD Limited.Google Scholar
Pier, B. 2013 Periodic and quasiperiodic vortex shedding in the wake of a rotating sphere. J. Fluids Struct. 41, 4350.10.1016/j.jfluidstructs.2012.09.002CrossRefGoogle Scholar
Poon, E.K.W., Ooi, A.S.H., Giacobello, M. & Cohen, R.C.Z. 2010 Laminar flow structures from a rotating sphere: effect of rotating axis angle. Intl J. Heat Fluid Flow 31, 961972.10.1016/j.ijheatfluidflow.2010.04.005CrossRefGoogle Scholar
Rimon, Y. 1969 Numerical solution of the incompressible time-dependent viscous flow past a thin oblate spheroid. Phys. Fluids 12, II-65-75.10.1063/1.1692471CrossRefGoogle Scholar
Rivet, J.P., Henon, M., Frisch, U. & d'Humieres, D. 1988 Simulating fully three-dimensional external flow by lattice gas methods. Europhys. Lett. 7, 231.10.1209/0295-5075/7/3/008CrossRefGoogle Scholar
Roberts, J.B. 1973 Coherence measurements in an axisymmetric wake. AIAA J. 11, 15691571.CrossRefGoogle Scholar
Roos, F.W. & Willmarth, W.W. 1971 Some experimental results on sphere and disk drag. AIAA J. 9, 285291.10.2514/3.6164CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1990 A study on vortex shedding from spheres in a uniform flow. Trans. ASME J. Fluids Engng 112, 386392.10.1115/1.2909415CrossRefGoogle Scholar
Shenoy, A.R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 605, 253262.10.1017/S0022112008001626CrossRefGoogle Scholar
Shenoy, A.R. & Kleinstreuer, C. 2010 Influence of aspect ratio on the dynamics of a freely moving circular disk. J. Fluid Mech. 653, 463487.10.1017/S0022112010000418CrossRefGoogle Scholar
Skarysz, M., Rokicki, J., Goujon-Durand, S. & Wesfreid, J.E. 2018 Experimental investigation of the wake behind a rotating sphere. Phys. Rev. Fluids 3, 013905.10.1103/PhysRevFluids.3.013905CrossRefGoogle Scholar
Tian, X., Xiao, L., Zhang, X., Yang, J., Tao, L. & Yang, D. 2017 Flow around an oscillating circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 812, 11191145.10.1017/jfm.2016.800CrossRefGoogle Scholar
Weller, H.G., Tabor, G., Jasak, H. & Fureby, C 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620631.10.1063/1.168744CrossRefGoogle Scholar
Yang, J., Liu, M., Wu, G., Liu, Q. & Zhang, X. 2015 Low-frequency characteristics in the wake of a circular disk. Phys. Fluids 27, 064101.10.1063/1.4922109CrossRefGoogle Scholar
Yang, J., Liu, M., Wu, G., Zhong, W. & Zhang, X. 2014 Numerical study on coherent structure behind a circular disk. J. Fluids Struct. 51, 172188.CrossRefGoogle Scholar
Zhao, Y., Gao, S., Zhang, X., Guo, X., Li, X. & Tian, X. 2021 Direct numerical simulations on the flow past a thin square plate. Phys. Fluids 33, 034128.10.1063/5.0039595CrossRefGoogle Scholar